Virus found to adapt through newly discovered path of evolution

March 29, 2018

Bucking a central tenet of biology, researchers at the University of California San Diego and their colleagues have discovered evidence for a new path of evolution, and with it a deeper understanding of how quickly organisms such as viruses can adapt to their environment.

Describing their findings in the March 30 issue of the journal Science, UC San Diego biologists conducted a series of experiments with a bacterial virus and found that it could infect "normal" hosts, as expected, but also--through a process previously unseen in evolution--acquired an ability to infect new host targets. The researchers say their findings, which address longstanding mysteries of how genes acquire new functions and how mutations arise to ease transmission from one host to another, could be applied to investigations of viral diseases such as Zika, Ebola and bird flu.

"This research shows us that viruses are much more adaptable than previously anticipated," said Justin Meyer, a UC San Diego Biological Sciences assistant professor and the paper's senior author. "By learning how viruses achieve evolutionary flexibility, we have new insight into how to set up road blocks to stop the emergence of new diseases."

Viruses infect by attaching themselves to molecular receptors on the surface of cells. These receptors are the "locks" that viruses must open to enter cells. The "keys" to the locks are viral proteins called host-recognition proteins. Researchers working in this area have focused on how mutations alter these protein keys--and what changes allow them to access new locks. Scientists have known for years that viruses can gain new keys with relatively few mutations but they have not solved the mysteries of how these mutations first appear.

This question led to a collaborative effort with researchers from UC San Diego, the Earth-Life Science Institute in Tokyo and Yale University.

Katherine Petrie in Meyer's laboratory led the project's experiments on lambda, a virus that infects bacteria but not humans and allows broad flexibility in lab testing. The researchers found that lambda overcomes the challenge of using a new receptor by violating a well-accepted rule of molecular biology through which genetic information is translated into a protein--the molecule that makes up living cells and viruses.

Petrie and colleagues found that a single gene sometimes yields multiple different proteins. The lambda virus evolved a protein sequence that was prone to structural instability that results in the creation of at least two different host-recognition proteins. Fortunately for the virus--but not its host--these different types of proteins can exploit different locks.

"We were able to capture this evolutionary process in action," said Petrie, the lead author of the study. "We found that the protein's 'mistakes' allowed the virus to infect its normal host, as well as different host cells. This nongenetic variation in the protein is a way to access more functions from a single DNA gene sequence. It's like a buy-one-get-one-free special for the protein."

The researchers are now looking for further examples of their newly discovered evolutionary phenomenon and seeking evidence for how common it is. They are also moving down in scale to probe the details of the new pathway to focus on the processes of individual molecules.

"This is a very atypical adaptation in that it's an evolutionary innovation," said Meyer.
-end-
In addition to Petrie and Meyer, the study's coauthors include Nathan Palmer, Daniel Johnson, Sarah Medina, Stephanie Yan and Victor Li of UC San Diego and Alita Burmeister of Yale University. Funding for the research was provided by the Earth-Life Science Institute Origins Network (funded by the John Templeton Foundation) and the National Science Foundation.

University of California - San Diego

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.