Nav: Home

Detecting volcanic eruptions

March 29, 2018

To borrow from a philosophical thought experiment: If a volcano erupts in a remote part of the world and no one hears it, does it still make a sound?

Indeed, it does. And not only does the sound occur, but it also can tell scientists about the timing and duration of the eruption itself.

As part of the United Nations' Comprehensive Nuclear-Test-Ban Treaty, an International Monitoring System was built to detect any nuclear explosion on Earth -- underground, underwater or in the atmosphere. Within that system is a network to detect atmospheric infrasound -- sound waves with frequencies below the lower limit of human audibility -- which scientists can also use to track volcanic eruptions in remote locations.

A new case study by an international team of scientists, led by UC Santa Barbara geophysicist Robin Matoza, examined data from the 2015 eruption of the Calbuco volcano in the Los Lagos Region of Chile. The researchers chose this event because they could compare long-range data with local readings, enabling study of the large volcanic explosion using infrasound sensors.

The team's analysis demonstrated that infrasound recorded at regional (15 to 250 kilometers) and long distances (greater than 250 km), such as on the International Monitoring System, delivered similar constraints on the timing and duration of the eruption, as did data from a local (less than 15 km) seismic network. Their results appear in the Journal of Geophysical Research: Solid Earth.

"We want to be able to monitor regions in the world where many volcanoes do not have local monitoring stations like Calbuco does," said Matoza, an assistant professor in UCSB's Department of Earth Science. "In some places -- for example, the Aleutian Islands in Alaska -- it's challenging to maintain observation networks on the volcanoes themselves due to harsh weather and their remote locations. Consequently, many Aleutian volcanoes are not instrumented. We want to be able to detect, locate and characterize remote explosive volcanic activity because eruptions can release ash clouds into the atmosphere, which are hazardous to aircraft."

In remote locales, researchers usually rely on satellite-based technology to monitor volcanoes, but according to Matoza, without ground-based information, it's difficult to know exactly when the eruption happened and how long it lasted.

"What's nice about infrasound is that we are able to gather information farther from the source than with traditional ground-based monitoring methods," Matoza explained. "Typically, seismic signals from eruptions don't propagate more than a few hundred kilometers from the source. With Calbuco, for example, you can see the eruption very clearly on the local monitoring stations and out to about 250 kilometers on regional seismic networks, but with infrasound, the signal propagates in the atmosphere for more than 5,000 kilometers. What's more, infrasound delivers different information than seismic data alone."

The Chilean national seismic network includes a relatively sparse number of infrasound sensors co-located with 10 seismometers (seismo-acoustic stations), which enabled this study. Placing such infrasound sensors at more seismic stations in volcanically active regions would be valuable, Matoza noted. The fact that one of the Chilean seismo-acoustic stations was only 250 kilometers from the eruption highlights the significant potential of existing regional seismic networks for augmenting the International Monitoring System with more infrasound sensors for eruption detection and monitoring.

"One of the recommendations from this study is that more seismic networks should also have infrasound sensors," Matoza said. "It's one extra channel of data to record that provides very useful information for improving volcano monitoring."
-end-


University of California - Santa Barbara

Related Volcanoes Articles:

Volcanoes under pressure
When will the next eruption take place? Examination of samples from Indonesia's Mount Merapi show that the explosivity of stratovolcanoes rises when mineral-rich gases seal the pores and microcracks in the uppermost layers of stone.
Jurassic world of volcanoes found in central Australia
An international team of subsurface explorers from the University of Adelaide in Australia and the University of Aberdeen in Scotland have uncovered a previously undescribed 'Jurassic World' of around 100 ancient volcanoes buried deep within the Cooper-Eromanga Basins of central Australia.
How do you forecast eruptions at volcanoes that sit 'on the cusp' for decades?
Some volcanoes take their time--experiencing protracted, years-long periods of unrest before eventually erupting.
Volcanoes shaped the climate before humankind
Five large volcanic eruptions occurred in the early 19th century.
'Artificial intelligence' fit to monitor volcanoes
More than half of the world's active volcanoes are not monitored instrumentally.
From Earth's deep mantle, scientists find a new way volcanoes form
Far below Bermuda's pink sand beaches and turquoise tides, geoscientists have discovered the first direct evidence that material from deep within Earth's mantle transition zone -- a layer rich in water, crystals and melted rock -- can percolate to the surface to form volcanoes.
Study: Microbes could influence earth's geological processes as much as volcanoes
By acting as gatekeepers, microbes can affect geological processes that move carbon from the earth's surface into its deep interior, according to a study published in Nature and coauthored by microbiologists at the University of Tennessee, Knoxville.
New evidence suggests volcanoes caused biggest mass extinction ever
Researchers say mercury buried in ancient rock provides the strongest evidence yet that volcanoes caused the biggest mass extinction in the history of the Earth.
Iron volcanoes may have erupted on metal asteroids
Metallic asteroids are thought to have started out as blobs of molten iron floating in space.
Scientists argue for more comprehensive studies of Cascade volcanoes
In a perspective essay published this week in Nature Communications, scientists argue for more 'synthesis' research looking at the big picture of volcanology to complement myriad research efforts looking at single volcanoes.
More Volcanoes News and Volcanoes Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.