Nav: Home

McSteen lab finds a new gene essential for making ears of corn

March 29, 2019

A team of scientists led by University of Missouri maize geneticist Paula McSteen has identified a gene essential for forming the ears in corn.

The new research, which appears in the journal Molecular Plant, extends the growing biological understanding of how different parts of corn plants develop, which is important information for a crop that is a mainstay of the global food supply.

"Corn is a vitally important crop, and the ears are the most crucial organ for plant yield. Knowing the genes that control this process and how they function together at a molecular level is crucial for efforts to increase crop yield," said McSteen, who is an associate professor of biological sciences in the College of Arts and Science and a principal investigator in Christopher S. Bond Life Sciences Center. "The information we glean from corn is also likely to be applicable to other cereals, including rice and wheat, because they also form grains on branches."

The researchers found that a gene called barren stalk2, or ba2, affects development of axillary meristems, which are special cells that give rise to the ears. As a corn plant grows, these cells are formed at nodes along the stalk. These nodes look like tiny grooves, or indentations, in the stem. When the plant is ready to make ears, these cells begin to divide and bud out from the stalk. These buds elongate to form the ear shoots and ultimately become the harvestable ears. The process is initiated by delivery of a hormone, called auxin, to the nodes that signals the cells to make ears.

To find the genes needed to produce organs like ears or anything else, geneticists look for plants that cannot make the organ properly. Plants with mutations in the ba2 gene never make ears, hence the name "barren stalk." The mutant plants do not have the grooves where the ears would form, which suggests that the gene functions early, before the ear bud forms. The ba2 mutant was discovered in a large genetic screen for corn plants unable to make ears, and the gene was identified by molecular mapping to chromosome 2.

Previous screens like this identified a mutation in a different gene, called barren stalk1 or ba1, that is also essential for making an ear. This other gene plays a key role in a molecular signaling pathway that controls ear development. To test whether the newly identified barren stalk plants have a different problem, the researchers performed genetic crosses, known as a complementation test, and concluded that the phenotype they observed in their plant was caused by a mutation in a totally different gene.

"Interestingly, this is actually a lost-and-found case," said McSteen. "We found that our mutation had previously been identified and characterized back in 1930, but had been lost sometime in the intervening years. It's exciting to have been able to rediscover it and add it back to the stock."

Through a series of additional analyses, the scientists found that the ba2 gene interacts genetically with the ba1 gene and that the corresponding proteins form a complex. ba2 also interacts with other genes known to regulate ba1. Together, these findings demonstrate that ba2 is in the same molecular signaling pathway as ba1 and that the two genes work in concert to regulate the development of ears.

"The end goal is to identify all the genetic players involved in controlling how and when corn ears are made. By identifying this new gene and showing that it forms a complex with BA1 to control meristem development, we've been able to bring this important story further along than what had been known previously," said McSteen.

Other researchers involved in the study included Andrea Skirpan with Penn State University; Brian Waddell and Simon Malcomber with California State University; and Hong Yao, Michaela S. Matthes, Norman Best, Tyler McCubbin, Amanda Durbak, and Taylor Smith with the University of Missouri.

In an accompanying review article in the same issue of the journal, McSteen and colleagues describe the current state of genetic research on auxin in corn, rice, and Arabidopsis. The review focuses in particular on the genes known to be involved in "turning on" the auxin hormone and getting it to the right place in the plant.

"Auxin is important to understand because it controls everything. Understanding the function of genes involved in the synthesis, transport, and signaling of auxin has been difficult because of a redundancy in gene function and expression. But now with new gene editing tools, like CRISPR technology, everyone is excited about being able to do this," said McSteen.
-end-
The research paper, titled "The barren stalk2 Gene Is Required for Axillary Meristem Development in Maize," and review article, titled "Auxin EvoDevo: Conservation and Diversification of Genes Regulating Auxin Biosynthesis, Transport, and Signaling," were published in the March issue of the journal Molecular Plant.

The research was funded by grants from the National Science Foundation.

University of Missouri-Columbia

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
Reading between the genes
For a long time dismissed as 'junk DNA,' we now know that also the regions between the genes fulfill vital functions.
The silence of the genes
Research led by Dr. Keiji Tanimoto from the University of Tsukuba, Japan, has brought us closer to understanding the mechanisms underlying the phenomenon of genomic imprinting.
Why some genes are highly expressed
The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter.
Activating genes on demand
A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.
Controlling genes with light
Researchers at Duke University have demonstrated a new way to activate genes with light, allowing precisely controlled and targeted genetic studies and applications.

Related Genes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".