Nav: Home

Scientists develop way to perform supercomputer simulations of the heart on cellphones

March 29, 2019

You can now perform supercomputer simulations of the heart's electrophysiology in real time on desktop computers and even cellphones. A team of scientists from Rochester Institute of Technology and Georgia Tech developed a new approach that can not only help diagnose heart conditions and test new treatments, but pushes the boundaries of cardiac science by opening up a floodgate of new cardiac research and education.

Heart disease is the leading cause of death worldwide, and cardiac dynamics modeling can be useful in the study and treatment of heart problems like arrhythmias. However, due to the complex electrophysiology of heart cells and tissue, modeling conditions like arrhythmias requires solving billions of differential equations and previously has been limited to only those with access to supercomputers.

"This opens up a lot of new research opportunities, including for RIT undergraduates," said Elizabeth Cherry, associate professor and director of RIT's mathematical modeling program and co-author of a new Science Advances article that introduces the new methodology. "I felt really restricted in what I could ask undergraduates to do in Research Experiences for Undergraduates programs or even our full-time students because the previous supercomputer simulations took so long. But now they can work with these complex models in real-time so it opens up a whole new world of opportunities to what they can study."

In hospital settings, the real-time models could allow doctors to have better discussions with their patients about life-threatening heart conditions.

"This visualization can be very useful for doctors to address a variety of cardiac problems," said Abouzar Kaboudian, a research scientist at Georgia Tech and co-author. "For example, a doctor can see what would happen if a pacemaker was placed on a particular location of the heart. Or, if the structure from CT scan data was available to a doctor, they could import the structural data for a particular patient and see what would cause an arrhythmia and what would be the course of action to eliminate the arrhythmia."

The novel approach relies on using WebGL code to repurpose graphics cards to perform calculations that speed up the scientific computing applications. The researchers developed a library that allows for high-performance computing of complex problems that require large-scale simulations to run them. Their streamlined methodology allows users to solve problems as fast as a supercomputer in web browsers that they are already familiar with.

"This opens the door to the possibility of doing patient-specific modeling in a reasonable way," said co-author Flavio Fenton, professor of physics at Georgia Tech. "There are many problems related to trying to solve these complex models for clinical use, but one of the big bottlenecks was performing these high-performance computing real-time simulations of complex models of the heart. Now they can be done."
-end-
The study was published in Science Advances. For more information, go to http://advances.sciencemag.org/.

For more information, contact Luke Auburn at 585-475-4335, lraits@rit.edu or on Twitter: @lukeauburn.

Rochester Institute of Technology

Related Supercomputer Articles:

Researchers measure the coherence length in glasses using the supercomputer JANUS
Thanks to the JANUS II supercomputer, researchers from Spain and Italy (Institute of Biocomputation and Physics of Complex Systems of the University of Zaragoza, Complutense University of Madrid, University of Extremadura, La Sapienza University of Rome and University of Ferrara), have refined the calculation of the microscopic correlation length and have reproduced the experimental protocol, enabling them to calculate the macroscopic length.
Officials dedicate OSC's newest, most powerful supercomputer
State officials and Ohio Supercomputer Center leaders gathered at a data center today (March 29) to dedicate the Owens Cluster.
A scientist and a supercomputer re-create a tornado
With tornado season fast approaching or already underway in vulnerable states throughout the US, new supercomputer simulations are giving meteorologists unprecedented insight into the structure of monstrous thunderstorms and tornadoes.
Calculating 1 billion plasma particles in a supercomputer
At the National Institutes of Natural Sciences National Institute for Fusion Science (NIFS) a research group using the NIFS 'Plasma Simulator' supercomputer succeeded for the first time in the world in calculating the movements of one billion plasma particles and the electrical field constructed by those particles.
Supercomputer simulations help develop new approach to fight antibiotic resistance
Supercomputer simulations at the Department of Energy's Oak Ridge National Laboratory have played a key role in discovering a new class of drug candidates that hold promise to combat antibiotic resistance.
Supercomputer comes up with a profile of dark matter
In the search for the mysterious dark matter, physicists have used elaborate computer calculations to come up with an outline of the particles of this unknown form of matter.
New Hikari supercomputer starts solar HVDC
The Hikari supercomputer launched at the Texas Advanced Computing Center is the first in the US powered by solar HVDC.
Wiring reconfiguration saves millions for Trinity supercomputer
A moment of inspiration during a wiring diagram review has saved more than $2 million in material and labor costs for the Trinity supercomputer at Los Alamos National Laboratory.
Chemistry consortium uses Titan supercomputer to understand actinides
A multi-institution team led by the University of Alabama's David Dixon is using Titan to understand actinide chemistry at the molecular level in hopes of designing methods to clean up contamination and safely store spent nuclear fuel.
Are humans the new supercomputer?
Online computer games allow gamers to solve a class of problems in quantum physics that cannot be easily solved by algorithms alone.

Related Supercomputer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...