Team explains 'the wallpaper problem'

March 30, 2008

CAMBRIDGE, Mass.--Frustrated by tape that won't peel off the roll in a straight line? Angry at wallpaper that refuses to tear neatly off the wall?

A new study reveals why these efforts can be so aggravating. Wallpaper is not out to foil you-it's just obeying the laws of physics, according to a team of researchers from the Centre National de la Recherche Scientifique (CNRS) in Paris, the Universidad de Santiago, Chile, and MIT.

The report, published in the March 30 online issue of Nature Materials, sheds light on a phenomenon many people have experienced, which the researchers dubbed "the wallpaper problem."

"You want to redecorate your bedroom, so you yank down the wallpaper. You wish that the flap would tear all the way down to the floor, but it comes together in a triangle and you have to start all over again," said Pedro Reis, one of the authors of the paper and an applied mathematics instructor at MIT.

This pattern, where two cracks propagate toward each other and meet at a point, is extremely robust. It applies not only to wallpaper but other adhesives such as tape, as well as nonadhesive plastic sheets such as the shrink-wrap that envelops compact discs. It even extends to fruit: The skin on a tomato or a grape typically forms a triangle when peeled off.

"This has happened to everyone. it's frustrating," said Reis, who collaborated with Enrique Cerda and Eugenio Hamm of the Universidad de Santiago, Benoit Roman of CNRS and Michael LeBlanc of the University of Chicago.

The team found that those ubiquitous triangular tears arise from interactions between three inherent properties of adhesive materials: elasticity (stiffness), adhesive energy (how strongly the adhesive sticks to a surface) and fracture energy (how tough it is to rip).

The researchers developed a formulation that predicts the angle of the triangle formed, based on those three properties.

They also figured out just how those triangular tears arise. As the strip is pulled, energy builds up in the fold that forms where the tape is peeling from the surface. The tape can release that energy in two ways: by unpeeling from its surface and by becoming narrower, both of which it does.

In a possible industrial application, materials engineers could use this method to calculate one of the three key properties, if the other two are known. This could be particularly useful in microtechnologies, such as stretchable electronics, where the characterization of thin material properties is very difficult.

Reis, who now works in MIT's Applied Mathematics Laboratory, and his collaborators at CNRS and Universidad de Santiago got the idea for the project after noticing consistent tearing patterns in plastic sheets such as the plastic wrapping of CDs.

The researchers tried controlled experimental versions of the same process in their lab and got the same results. "This shape is really robust, so there must be something fundamental going on that gives rise to these shapes," Reis said.

However, the shapes formed by tearing nonadhesive sheets proved difficult to study because they are not perfect triangles, and without adhesion, the physics of the problem is more complicated. Instead, the researchers turned their attention to adhesives, which do form perfect triangles when torn.

The triangular shapes can also be seen in the work of French artist Jacques Villeglé. His art consists of posters taken from the streets of Paris and other French cities, complete with the same sort of rips that the researchers studied. One of the posters may be featured on the cover of Nature Materials to illustrate the team's paper.

Torn posters, tape and tomato skins may seem like strange research topics for physicists and applied mathematicians, but it's perfectly normal to Reis and his colleagues, who draw inspiration from an array of everyday objects.

Such real-world applications are not only fun to study, but "we can really learn things that will be useful for industry and help us understand the everyday world around us. It is also a great way to motivate students to be interested in science," Reis said.
-end-
The research was funded by FONDAP, CIMAT, France's Ministry of Research and MechPlant.

Massachusetts Institute of Technology

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.