No laughing matter -- bacteria are releasing a serious greenhouse gas

March 30, 2008

Unlike carbon dioxide and methane, laughing gas has been largely ignored by world leaders as a worrying greenhouse gas. But nitrous oxide must be taken more seriously, says Professor David Richardson from the University of East Anglia in Norwich, UK, speaking today (Monday 31 March 2008) at the Society for General Microbiology's 162nd meeting being held this week at the Edinburgh International Conference Centre.

"It only makes up 9% of total greenhouse gas emissions, but it's got 300 times more global warming potential than carbon dioxide", says Prof Richardson. "It can survive in the atmosphere for 150 years, and it's recognised in the Kyoto protocol as one of the key gases we need to limit".

The potent gas is mainly coming from waste treatment plants and agriculture. Its release is increasing at the rate of 50 parts per billion or 0.25% every year. This means that it can be better controlled with suitable management strategies, but only if the importance of nitrous oxide (N2O) is widely recognised first.

"When faced with a shortage of oxygen, many species of bacteria can switch from using oxygen to using nitrates instead", says Prof Richardson. "Nitrates can support their respiration, the equivalent of our breathing, and bacteria can get energy through processes called denitrification and ammonification. When they do this nitrous oxide is released into the environment".

Municipal sewage treatment plants, landfill sites and marshy areas polluted with too much agricultural fertiliser are all places teeming with so many bacteria that there is a shortage of oxygen for all of them to survive using normal respiration alone. This means they need to use other respiratory strategies, which release nitrous oxide.

The researchers are using a combination of laboratory based studies, fieldwork and computer modelling to understand better the key environmental variables that make different micro-organisms release nitrous oxide.

"We are finding new biological routes for nitrous oxide emission that no-one ever suspected before. This could make a big impact on our environment", says Prof Richardson. "Global warming affects everyone, and understanding the biology of nitrous oxide emissions will be an important step in mitigating their impact. We urgently need to start developing better strategies to improve management of these emissions in the agricultural and waste treatment sectors".
-end-


Microbiology Society

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.