Nav: Home

Tracking deer by NASA satellite

March 30, 2016

Mule deer mothers are in sync with their environment, with reproduction patterns that closely match the cycles of plant growth in their habitat. And new research using NASA satellite data shows that tracking vegetation from space can help wildlife managers predict when does will give birth to fawns.

Raising a fawn is no easy task - a doe needs a rich supply of vegetation for the late stages of pregnancy and for nursing. Mule deer birth rates peak shortly before the peak of annual plant growth, when food sources are increasing. Through a combination of satellite measurements and ground-based population counts, researchers can forecast the timing of fawning seasons based on vegetation.

"We had never tracked the deer population this way, and we had never been able to predict it with such precision," said David Stoner of Utah State University, lead author of a recent study. "We can estimate the start and peak of the season using satellite imagery, and then we can map and predict when the deer are giving birth in any given region."

Mule deer populations are closely monitored and counted by biologists and land managers, in part to determine population trends over time, which helps them set the proper number of hunting permits to issue. At the same time, remote sensing scientists have a space-based way to track when vegetation greens up and how productive it is compared to drought or wet years. the health of vegetation. The tool is called the Normalized Difference Vegetation Index (NDVI), which is a measure of the "greenness" of the landscape. It measures how plants absorb and reflect light -- the more infrared light is reflected, the healthier the vegetation. So by measuring the greenness of the mule deer habitat, scientists were able to mark the beginning and peak of the plant growing season - and the fawning season.

To visualize the relationship between vegetation greenness and fawns, Stoner and his colleagues divided mule deer habitat that stretched from southern Idaho to central Arizona into three zones. They measured the NDVI for each day of the calendar year, using the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on NASA's Terra and Aqua satellites.

They found that vegetation greenness in the northern latitudes peaks earlier than in the southern latitudes, according to Stoner. Since nutrient-dense food sources were available earlier in the year, there was more food available for mule deer mothers and babies at the time when they needed it most. That greenness is partly a result of a consistent stream of snowmelt moisture feeding the deep roots of mountain plants.

In southern latitudes, on the other hand, the plants are more dependent on rain from late summer monsoonal showers. This means vegetation quality peaks later in the year, after a brief drought that comes before the summer monsoons. As a result, does give birth later in the south than in the north.

"This kind of applied research is very important for making remote sensing data relevant to wildlife management efforts," said Jyoteshwar Nagol, a researcher at the University of Maryland. Deer have a huge economic impact in the United States, from hunting to crop damage to car accidents. As regional climates shift or droughts occur, deer distributions could change in response to changes in the timing of vegetation green-up.
-end-
For more information:

http://modis.gsfc.nasa.gov/

Earth Observatory Story:

http://earthobservatory.nasa.gov/IOTD/view.php?id=87736&eocn=home&eoci=iotd_previous

NASA/Goddard Space Flight Center

Related Plant Growth Articles:

Plant cell walls' stretch-but-don't-break growth more complex than once thought
Plant cell wall growth is typically described as a simple process, but researchers using a microscope that can resolve images on the nanoscale level have observed something more complex.
Electronics to control plant growth
A drug delivery ion pump constructed from organic electronic components also works in plants.
Researchers develop equation that helps to explain plant growth
New UCLA biology breakthrough has important implications for plants as they adapt to a warming environment.
Mutant maize offers key to understanding plant growth
New findings by a University of California, Riverside-led team of researchers, lend support to the second idea, that the orientation of cell division is critical for overall plant growth.
How plant cells regulate growth shown for the first time
Researchers have managed to show how the cells in a plant, a multicellular organism, determine their size and regulate their growth over time.
Compounds produced by phytopathogenic microbes encourage plant growth
A broad range of microorganisms, including phytopathogenic fungi and bacteria, are capable of producing volatile compounds that encourage plant growth, flowering and the accumulation of reserve substances.
Compounds emitted by phytopathogen microbes encourage plant growth
A wide range of microorganisms, including fungi and phytopathogenic bacteria, are capable of emitting volatile compounds which boost plant growth and flowering, and in accumulating up reserves as demonstrated in a study led by scientific researchers at Navarra's Institute of Agro biotechnology, in northern Spain, which is a mixed centre shared between Spain's National Research Council (CSIC), the Public University of Navarra, and the Regional Government of Navarra.
Ancient proteins shown to control plant growth
A UCLA-led international team of life scientists reports the discovery of new mechanisms regulating plant growth that quite possibly provide new insights into how the mammalian biological clock affects human health.
Study finds that plant growth responses to high carbon dioxide depend on symbiotic fungi
Research by an international team of environmental scientists from the United Kingdom, Belgium and United States, including Indiana University, has found that plants that associate with one type of symbiotic fungi grow bigger in response to high levels of carbon dioxide, or CO2, in the atmosphere, but plants that associate with the other major type of symbiotic fungi do not.
New understanding of plant growth brings promise of tailored products for industry
In the search for low-emission plant-based fuels, new research could lead to sustainable alternatives to fossil fuel-based products.

Related Plant Growth Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".