Nav: Home

Simulating supermassive black holes

March 30, 2016

Near the edge of the visible Universe are some of the brightest objects ever observed, known as quasars, which are believed to contain supermassive black holes of more than a billion times the mass of our Sun. Simulations by Kentaro Nagamine at Osaka University's Department of Earth and Space Science, Isaac Shlosman at the University of Kentucky and co-workers have revealed for the first time exactly how these black holes formed 700 million years after the Big Bang.

"The early Universe was a dense, hot and uniform plasma," explains Nagamine. "As it cooled, fluctuations in the mass distribution formed seeds around which matter could gather due to gravity." These are the origins of the first stars. Similar processes might have later seeded the growth of bigger structures such as supermassive black holes.

Until recently, many researchers thought supermassive black holes were seeded by the collapse of some of the first stars. But modeling work by several groups has suggested that this process would only lead to small black holes. Nagamine and co-workers simulated a different situation, in which supermassive black holes are seeded by clouds of gas falling into potential wells created by dark matter -- the invisible matter that astronomers believe makes up 85% of the mass of the Universe.

Simulating the dynamics of huge gas clouds is extremely complex, so the team had to use some numerical tricks called 'sink particles' to simplify the problem.

"Although we have access to extremely powerful supercomputers at Osaka University's Cybermedia Center and the National Astronomical Observatory of Japan, we can't simulate every single gas particle," explains Nagamine. "Instead, we model small spatial scales using sink particles, which grow as the surrounding gas evolves. This allows us to simulate much longer timescales than was previously possible."

The researchers found that most seed particles in their simulations did not grow very much, except for one central seed, which grew rapidly to more than 2 million Sun-masses in just 2 million years, representing a feasible path toward a supermassive black hole. Moreover, as the gas spun and collapsed around the central seed it formed two misaligned accretion discs, which have never been observed before.

In other recent work, Nagamine and co-workers described the growth of massive galaxies that formed around the same time as supermassive black holes [1]. "We like to push the frontier of how far back in time we can see," says Nagamine. The researchers hope their simulations will be validated by real data when NASA's James Webb Space Telescope, due to be launched in 2018, observes distant sources where direct gas collapse is happening.
-end-
1. Yajima, H., Shlosman, I., Romano-Díaz, E. & Nagamine, K. Observational properties of simulated galaxies in overdense and average regions at redshifts z?6-12. Monthly Notices of the Royal Astronomical Society 451, 418-432 (2015).

Osaka University

Related Supermassive Black Holes Articles:

Massive filaments fuel the growth of galaxies and supermassive black holes
Based on direct observations researchers have discovered massive filaments between galaxies in a proto-cluster, extending over more than 1 million parsecs and providing the fuel for intense formation of stars and the growth of super massive black holes within the proto-cluster.
Pair of supermassive black holes discovered on a collision course
Astronomers have spotted a pair of supermassive black holes on a collision course in a galaxy 2.5 billion light-years away.
Researchers decipher the history of supermassive black holes in the early universe
Astrophysicists at Western University have found evidence for the direct formation of black holes that do not need to emerge from a star remnant.
Cool, nebulous ring around Milky Way's supermassive black hole
New ALMA observations reveal a never-before-seen disk of cool, interstellar gas wrapped around the supermassive black hole at the center of the Milky Way.
Astronomers discover 83 supermassive black holes in the early universe
Astronomers from Japan, Taiwan and Princeton University have discovered 83 quasars powered by supermassive black holes that were formed when the universe was only 5 percent of its current age.
More Supermassive Black Holes News and Supermassive Black Holes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...