Cancer cells disguise themselves by switching off genes, new research reveals

March 30, 2017

Amsterdam, March 30, 2017 - Scientists have uncovered how tumor cells in aggressive uterine cancer can switch disguises and spread so quickly to other parts of the body. In a study published in Neoplasia, researchers at the Washington University School of Medicine created a map showing which genes were switched on and off in different parts of the tumor, providing a "signature" of these switches throughout the genome.

The researchers say their findings support the idea that cancer cells suffer from an "identity crisis" -- they switch off certain genes specific to the tissue they came from -- helping them fit in more easily in different tissues, spreading the cancer. Switching these genes back on, they say, could lead to effective treatments.

Uterine carcinosarcoma is one of the deadliest forms of endometrial cancer. Unlike more common forms, it is particularly aggressive and accounts for a large proportion of the deaths related to endometrial cancer. Most tumors are made up of cells that stick to a certain growth pattern. But there can be several different types of cell in a uterine carcinosarcoma tumor, including ones that are not usually found in the uterus.

The researchers thought this ability to switch between different cell types could explain why they can spread so easily around the body; switching cell type effectively disguises the cells in different tissues. To find out how the cells change disguises, they created a map of the genes that were turned off when they were usually on, and vice versa.

"Carcinosarcoma cells show a unique ability to jump horses in mid-stream, switching from one cell type to another," said Dr. Ian Hagemann, one of the authors of the study. "It's not always changes in the DNA itself, but how the DNA is 'decorated' to turn the genes on and off -- called epigenetics -- that can determine cell type. I wanted to find out if there were consistent epigenetic changes in carcinosarcoma that could explain why it's so aggressive."

To determine how the cells switch from one type to another, they took three human uterine carcinosarcoma samples and sequenced the genomes of cells in two parts of each tumor: the carcinoma and sarcoma components. They analyzed the results to identify where the DNA had decorations called methylation -- molecules attached that switch the gene on or off. They compared the results to healthy uterine cells.

They found that some parts of the tumor DNA had consistently more decorations and some had fewer. These epigenetic changes switched off certain genes that suppress tumors: KLF4, NDN and WT1. Understanding these epigenetic changes provides a possibility to switch the genes back on, helping the body stop the aggressive tumors from forming.

"In the past, epigenetic changes were difficult to study on a genome-wide basis," said Dr. Ting Wang, one of the authors of the study. "Our laboratory has pioneered several methods that make it possible to construct whole-genome methylation maps at single-nucleotide resolution. With these improved tools, we can now reveal epigenetic changes in cancers, which may well be just as significant as genetic mutations."
Notes for editors

The article is "Whole-Genome DNA Methylation Profiling Identifies Epigenetic Signatures of Uterine Carcinosarcoma," by Jing Li, Xiaoyun Xing, Daofeng Li, Bo Zhang, David G. Mutch, Ian S. Hagemann and Ting Wang ( It appears in Neoplasia, volume 19, issue 2 (February 2017), published by Elsevier.

This paper is available open access.

About Neoplasia

Neoplasia publishes the results of novel investigations in all areas of oncology research. Neoplasia features studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment.

About Elsevier

Elsevier is a global information analytics company that helps institutions and professionals progress science, advance healthcare and improve performance for the benefit of humanity. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support, and professional education; including ScienceDirect, Scopus, ClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, more than 35,000 e-book titles and many iconic reference works, including Gray's Anatomy. Elsevier is part of RELX Group, a world-leading provider of information and analytics to professionals and business customers, in a wide range of industries.


Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to