Nav: Home

Speeding star gives new clues to breakup of multi-star system

March 30, 2017

A remarkable new discovery using NASA's Hubble Space Telescope reveals three stars that now hold the record as the youngest-known examples of a super-fast-flying breed. "Until these observations, only a few -- but older -- examples of such rapidly-moving stars had been found with origins traceable back to the volatile systems that likely ejected them," said lead researcher Kevin Luhman of Penn State University. "The new Hubble observations provide very strong evidence that these three stars were ejected from an unstable multi-star system." The new discovery is published in this month's Astrophysical Journal Letters.

"Based on infrared images, these three stars appear to be only a few hundred thousand years old -- young enough to have disks of material left over from their formation," Luhman said. During the mid 1400s, these three young stars likely were in a gravitational battle with each other that ended when the system exploded, ejecting its stars at high speeds in different directions.

Two of the three stars were discovered during the past few decades -- hundreds of years after they were catapulted out of their original unstable system -- but only after infrared and radio observations became advanced enough to penetrate the thick dust inside the Milky Way's Orion Nebula. These earlier observations showed that the two stars were traveling at high speed in opposite directions from each other.

Previously, astronomers had traced the paths of the two oppositely speeding stars, finding that they had been in the same location 540 years before. This discovery suggested they were part of a now-defunct multiple-star system in the Orion Nebula. But the duo's combined energy propelling them outward didn't add up. The previous researchers calculated that the energy of at least one other star was needed to blast itself away and also the two oppositely speeding stars.

The astronomers led by Luhman followed the path of the newly discovered star, and found that it traced back to the same location where the two previously known stars were located 540 years ago. The speeding trio are in a small region of young stars called the Kleinmann-Low Nebula, near the center of the vast Orion Nebula complex, 1,300 light-years from Earth. All three stars are flying extremely fast on their way out of the Kleinmann-Low Nebula, up to nearly 30 times faster than most of the nebula's other stars.

Luhman stumbled across the third speedy star, called "source x," while he was hunting for free-floating planets in the Orion Nebula as a member of an international team led by Massimo Robberto of the Space Telescope Science Institute in Baltimore, Maryland. The team used the near-infrared vision of Hubble's Wide Field Camera 3 to conduct the survey. "Very few examples of such stars have been observed, especially in very young clusters," Luhman said, even though computer simulations had led astronomers to predict that these gravitational tug-of-wars would occur in young clusters, where newborn stars are crowded together.

During the analysis, Luhman was comparing the new infrared images taken in 2015 with infrared observations taken in 1998 by the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). He noticed that "source x" had changed its position considerably over 17 years in Hubble images relative to nearby stars, indicating that "source x" was moving unusually fast, about 130,000 miles per hour.

Luhman then looked at the star's previous locations, projecting its path back in time. He realized that, in the 1470s, "source x" had been near the same initial location in the Kleinmann-Low Nebula as the two other runaway stars, named Becklin-Neugebauer (BN) and "source I."

"All three stars were most likely kicked out of their home when they engaged in a game of gravitational billiards," Luhman said. What often happens when a multiple system falls apart is that two of the stars move close enough to each other that they either merge or they form a very tight pair. In either case, their coming together releases enough gravitational energy that it propels all of the other stars in the system outward. The energetic episode also produces a massive outflow of material, which we see in Hubble's infrared NICMOS images as fingers of matter streaming away from the location of the "source I" star. Previous studies suggested that this material points to "source I" as the instigator in the system's breakup.

"It's very obvious when you look at the infrared NICMOS images that there are these fingers of emission emanating from "source I" in the center of the Kleinmann-Low Nebula, where the interaction occurred," Robberto said. "These are jets of material, just like the jets fired off by young stars, except that the outflow here is much more explosive and on a much larger scale than you typically see from a young star."

The BN star was discovered in infrared images in 1967, but its rapid motion wasn't detected until 1995, when radio observations measured the star's speed at 60,000 miles per hour. "Source I" is travelling roughly 22,000 miles per hour. The star had been detected only in radio observations because it is so heavily enshrouded in dust that all of its visible and infrared light is blocked.

Future telescopes, such as the James Web Space Telescope being build by NASA, will be able to observe a large swath of the Orion Nebula. By comparing images of the nebula taken by this future telescope with those made by Hubble years earlier, astronomers hope to identify more runaway stars from exploded multiple-star systems.
-end-
This research received financial support with grants from the National Science Foundation and the Space Telescope Science Institute.

CONTACTS

Kevin Luhman: kluhman@astro.psu.edu, (+1) 814-863-4957

Barbara Kennedy (PIO): science@psu.edu, (+1) 814-863-4682

Penn State

Related Nebula Articles:

Astrophysicists link brightening of pulsar wind nebula to pulsar spin-down rate transition
Astrophysicists have discovered that the pulsar wind nebula (PWN) surrounding the famous pulsar B0540-69 brightened gradually after the pulsar experienced a sudden spin-down rate transition (SRT).
The highest energy gamma rays discovered by the Tibet ASgamma experiment
The Tibet ASgamma experiment, a China-Japan joint research project, has discovered the highest energy cosmic gamma rays ever observed from an astrophysical source - in this case, the 'Crab Nebula.' The experiment detected gamma rays ranging from > 100 Teraelectron volts (TeV) to an estimated 450 TeV.
Hubble celebrates its 29th birthday with unrivaled view of the Southern Crab Nebula
This incredible image of the hourglass-shaped Southern Crab Nebula was taken to mark the NASA/ESA Hubble Space Telescope's 29th anniversary in space.
Lifting the veil on star formation in the Orion Nebula
Writing in 'Nature', an international research team including astronomers from Cologne describe their discovery that stellar wind from a newborn star in the Orion Nebula is preventing more stars from forming nearby.
Hubble reveals cosmic Bat Shadow in the Serpent's Tail
The NASA/ESA Hubble Space Telescope has captured part of the wondrous Serpens Nebula, lit up by the star HBC 672.
Ultra-close stars discovered inside a planetary nebula
An international team of astronomers have discovered two stars in a binary pair that complete an orbit around each other in a little over three hours, residing in the planetary nebula M3-1.
Stars vs. dust in the Carina Nebula
The Carina Nebula, one of the largest and brightest nebulae in the night sky, has been beautifully imaged by ESO's VISTA telescope at the Paranal Observatory in Chile.
Discovery of a structurally 'inside-out' planetary nebula
The Instituto de Astrofísica de Andalucía (IAA-CSIC) in Spain, the Laboratory for Space Research (LSR) of the University of Hong Kong (HKU), and an International team comprising scientists from Argentina, Mexico and Germany have discovered the unusual evolution of the central star of a planetary nebula in our Milky Way.
Hubble celebrates 28th anniversary with a trip through the Lagoon Nebula
This colorful cloud of glowing interstellar gas is just a tiny part of the Lagoon Nebula, a vast stellar nursery.
New models give insight into the heart of the Rosette Nebula
New research, led by the University of Leeds, offers an explanation for the discrepancy between the size and age of the Rosetta Nebula's central cavity and that of its central stars.
More Nebula News and Nebula Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.