Satellite galaxies at edge of Milky Way coexist with dark matter, says RIT study

March 30, 2017

Research conducted by scientists at Rochester Institute of Technology rules out a challenge to the accepted standard model of the universe and theory of how galaxies form by shedding new light on a problematic structure.

The vast polar structure--a plane of satellite galaxies at the poles of the Milky Way--is at the center of a tug-of-war between scientists who disagree about the existence of mysterious dark matter, the invisible substance that, according to some scientists, comprises 85 percent of the mass of the universe.

A paper accepted for publication in the Monthly Notices for the Royal Astronomical Society bolsters the standard cosmological model, or the Cold Dark Matter paradigm, by showing that the vast polar structure formed well after the Milky Way and is an unstable structure.

The study, "Is the Vast Polar Structure of Dwarf Galaxies a Serious Problem for CDM?"-- available online at https://arxiv.org/abs/1612.07325-- was co-authored by Andrew Lipnicky, a Ph.D. candidate in RIT's astrophysical sciences and technology program, and Sukanya Chakrabarti, assistant professor in RIT's School of Physics and Astronomy, whose grant from the National Science Foundation supported the research.

Lipnicky and Chakrabarti analyze the distribution of the classical Milky Way dwarf galaxies that form the vast polar structure and compares it to simulations of the "missing" or subhalo dwarf galaxies thought to be cloaked in dark matter.

Using motion measurements, the authors traced the orbits of the classical Milky Way satellites backward in time. Their simulations showed the vast polar structure breaking up and dispersing, indicating that the plane is not as old as originally thought and formed later in the evolution of the galaxy. This means that the vast polar structure of satellite galaxies may be a transient feature, Chakrabarti noted.

"If the planar structure lasted for a long time, it would be a different story," Chakrabarti said. "The fact that it disperses so quickly indicates that the structure is not dynamically stable. There is really no inconsistency between the planar structure of dwarf galaxies and the current cosmological paradigm."

The authors removed the classical Milky Way satellites Leo I and Leo II from the study when orbital analyses determined that the dwarf galaxies were not part of the original vast polar structure but later additions likely snatched from the Milky Way. A comparison excluding Leo I and II reveals a similar plane shared by classical galaxies and their cloaked counterparts.

"We tried many different combinations of the dwarf galaxies, including distributions of dwarfs that share similar orbits, but in the end found that the plane always dispersed very quickly," Lipnicky said.

Opposing scientific thought rejects the existence of dark matter. This camp calls into question the standard cosmological paradigm that accepts both a vast polar structure of satellite galaxies and a hidden plane of dark-matter cloaked galaxies. Lipnicky and Chakrabarti's study supports the co-existence of these structures and refutes the challenge to the accepted standard model of the universe.
-end-
Their research concurs with a 2016 study led by Nuwanthika Fernando, from the University of Sydney, which found that certain Milky Way planes are unstable in general. The paper published in the Monthly Notices for the Royal Astronomical Society.

Rochester Institute of Technology

Related Dark Matter Articles from Brightsurf:

Dark matter from the depths of the universe
Cataclysmic astrophysical events such as black hole mergers could release energy in unexpected forms.

Seeing dark matter in a new light
A small team of astronomers have found a new way to 'see' the elusive dark matter haloes that surround galaxies, with a new technique 10 times more precise than the previous-best method.

Holding up a mirror to a dark matter discrepancy
The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.

Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.

Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.

New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.

Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.

Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Read More: Dark Matter News and Dark Matter Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.