Nav: Home

Proteins that can take the heat

March 30, 2017

Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences. Researchers used experiments to examine critical differences between 15 proteins from the thioredoxin family, including seven extinct protein sequences that date back more than 4 billion years and were resurrected using ancestral sequence reconstructions.

"In industrial applications, proteins could do some of the work of chemicals with less energy and less toxicity, but they have to be able to withstand the higher temperatures of industrial processes," said George Makhatadze, a Constellation Professor of Biocomputation and Bioinformatics and member of the Center for Biotechnology and Interdisciplinary Studies at Rensselaer Polytechnic Institute. "This research suggests that ancestral reconstruction methods can be used to design proteins that unfold more slowly, offering greater utility, at higher temperatures."

The experiments showed that the difference in stability between proteins from the same family is caused primarily by differences in the energy required to unfold the proteins, a finding that upholds a long-held theory known as the "principle of minimal frustration," proposed by physicists about 30 years ago.

Proteins are molecular chains in which each link is one of 20 amino acids. Once the chain is assembled, various forces along its length interact, causing the string to twist and turn, and ultimately fold into a three-dimensional shape. The protein can only perform its function when properly folded. Most proteins remain folded within a set range of temperature, pH, or pressure conditions, breaking down when subjected to conditions outside of these tolerances.

Not all the rules that govern protein folding are known, and Makhatadze wanted to understand how proteins within the same family, with similar structure, are able to perform the same life-sustaining function in vastly different thermal environments. Thioredoxins, for example, are present in all organisms, from those that live near boiling hydrothermal vents to frigid Arctic waters.

One known rule helps to explain why there are an astronomical number of sequences possible for proteins with hundreds and even thousands of links, but only a small subset of those possible sequences are found in nature. This rule, the principle of minimal frustration, posits that nature chooses only those sequences that fold most efficiently, reducing undesired interactions between amino acids and producing faster, less frustrated, folding patterns.

To be consistent with the principle of minimal frustration, Makhatadze said, proteins with similar structure but different thermodynamic stability should fold along the same efficient pattern, but those with greater ability to tolerate heat should take longer to unfold. Experiments, undertaken first with eight modern-day thioredoxins, proved the hypothesis correct.

"We tested the folding rates among thioredoxins, a family of proteins that perform the same function but -- because they function in different thermal conditions -- must be different in terms of thermodynamics," said Makhatadze. "And what we observed is that for these proteins, they indeed fold with the same rate, but they unfold with a different rate -- which is what we predicted."

In the next step, researchers tested extinct versions of thioredoxins that had been obtained using a technique called ancestral sequence reconstruction. The extinct versions unfolded more slowly than modern versions, in some case folding 3,000 times more slowly than a modern counterpart.

"Here we have two versions of a protein from the same family and one unfolded in seven seconds, the other in six hours," Makhatadze said. "That means you can get useful function from the protein for six hours versus seven seconds. This shows that ancestral sequence reconstruction may be a route to proteins that are more stable at high temperatures."

The finding is supported by previously published research and geochemical data which indicates that Earth and its oceans were hotter in the ancient past.

"Previous research supports the finding that older proteins are more stable, but this new research shows these ancient proteins are more stable because they unfold more slowly," Makhatadze said.

"Evidence for the principle of minimal frustration in the evolution of protein folding landscapes" can be found using the digital object identifier doi: 10.1073/pnas.1613892114. The research was supported by the National Science Foundation. Makhatadze was joined in the research by Fanco Tzul, a postdoctoral research associate, and graduate student Daniel Vasilchuk.

Makhatadze's research is enabled by the vision of The New Polytechnic, an emerging paradigm for higher education which recognizes that global challenges and opportunities are so great they cannot be adequately addressed by even the most talented person working alone. Rensselaer serves as a crossroads for collaboration -- working with partners across disciplines, sectors, and geographic regions -- to address complex global challenges, using the most advanced tools and technologies, many of which are developed at Rensselaer. Research at Rensselaer addresses some of the world's most pressing technological challenges -- from energy security and sustainable development to biotechnology and human health. The New Polytechnic is transformative in the global impact of research, in its innovative pedagogy, and in the lives of students at Rensselaer.
-end-
About Rensselaer Polytechnic Institute

Rensselaer Polytechnic Institute, founded in 1824, is America's first technological research university. For nearly 200 years, Rensselaer has been defining the scientific and technological advances of our world. Rensselaer faculty and alumni represent 85 members of the National Academy of Engineering, 17 members of the National Academy of Sciences, 25 members of the American Academy of Arts and Sciences, 8 members of the National Academy of Medicine, 8 members of the National Academy of Inventors, and 5 members of the National Inventors Hall of Fame, as well as 6 National Medal of Technology winners, 5 National Medal of Science winners, and a Nobel Prize winner in Physics. With 7,000 students and nearly 100,000 living alumni, Rensselaer is addressing the global challenges facing the 21st century--to change lives, to advance society, and to change the world. To learn more, go to http://www.rpi.edu.

Rensselaer Polytechnic Institute

Related Amino Acids Articles:

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.
New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.
Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.
To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.
Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.
Differentiating amino acids
Researchers develop the foundation for direct sequencing of individual proteins.
Simulating amino acid starvation may improve dengue vaccines
In a new paper in Science Signaling, researchers at the University of Hyderabad in India and the Cornell University College of Veterinary Medicine show that a plant-based compound called halofuginone improves the immune response to a potential vaccine against dengue virus.
CoP-electrocatalytic reduction of nitroarenes: a controllable way to azoxy-, azo- and amino-aromatic
The development of a green, efficient and highly controllable manner to azoxy-, azo- and amino-aromatics from nitro-reduction is extremely desirable both from academic and industrial points of view.
Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.
Researchers develop fast, efficient way to build amino acid chains
Researchers report that they have developed a faster, easier and cheaper method for making new amino acid chains -- the polypeptide building blocks that are used in drug development and industry -- than was previously available.
More Amino Acids News and Amino Acids Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.