Nav: Home

Method identified to boost detection of highly cancerous stem cells

March 30, 2017

Japanese researchers identify process to improve fluorescence detection of cancer stem cells, which are primarily responsible for brain tumor progression and recurrence after treatment

Tokyo - Photodynamic detection and therapy has recently emerged as a promising approach for diagnosing and treating cancer. With this process, patients are given a chemical metabolized specifically in tumor cells so that it becomes fluorescent, allowing visual identification and surgical removal of the tumor.

Complete removal of all cancerous cells is crucial, as any residual cells can cause tumor recurrence. However, tumors are made up of a variety of different cell types, and it has been unclear whether photodynamic detection identifies all of them. Cancer stem cells, a type of self-renewing cell found in tumors, are of particular interest because they are the main cell type responsible for tumor progression and for resistance to chemotherapy and radiotherapy, and therefore a major cause of tumor recurrence after treatment. Assessing and optimizing photodynamic detection for cancer stem cell detection is vital to the approach's success.

In a new study published in Scientific Reports, Tokyo Medical and Dental University (TMDU)-led researchers investigated photodynamic detection of cancer stem cells in a glioma cell line, a model of a highly aggressive type of brain cancer. They identified a subpopulation of glioma stem cells, which, unlike most glioma cells, did not accumulate substantial amounts of fluorescent product during photodynamic detection. When transplanted into immunosuppressed mice, these low-fluorescence stem cells rapidly formed tumors, whereas high-fluorescence stem cells did not.

"This is a clear problem for photodynamic detection," corresponding author Tetsuya Taga says. "The cells that escape detection are the ones that, if not removed, are the most likely to result in treatment failing and a tumor recurring. By increasing fluorescence in these cells, we could substantially improve the success of fluorescence detection and tumor removal."

The researchers went on to investigate possible mechanisms for, and solutions to, low fluorescence levels. Iron is required to break down the fluorescent material in cells, so they explored chelating iron (binding it to prevent it from participating in this process).

"We were able to boost fluorescence accumulation in the highly tumorigenic low-fluorescence glioma stem cell subpopulation using a clinically approved iron chelator," co-corresponding author Kouichi Tabu says. "This is particularly exciting because it means this new method has potential to rapidly translate to clinical practice."

Further investigation of the metabolic pathway that breaks down the fluorescent material revealed a gene, heme oxygenase-1 (HO-1), that may be responsible for the differences in fluorescence. Targeting HO-1 is therefore another potential approach to improving photodynamic detection in human glial cell cancers.
-end-
The article, "Enhancement of 5-aminolevulinic acid-based fluorescence detection of side population-defined glioma stem cells by iron chelation" was published in Scientific Reports at DOI:10.1038/srep42070

Tokyo Medical and Dental University

Related Brain Cancer Articles:

A unique amino acid for brain cancer therapy
Researchers discover potential application of amino acid taurine in photodynamic therapy for brain cancer.
Five years before brain cancer diagnosis, changes detectable in blood
Changes in immune activity appear to signal a growing brain tumor five years before symptoms arise, new research has found.
New insight into life-threatening childhood brain cancer
The most common type of malignant childhood brain cancer has been identified as seven separate conditions each needing a different treatment, new research has revealed.
New potential treatment for aggressive brain cancer in children
Findings present an opportunity for a precision medicine approach to brain tumor treatment.
Encouraging results for patients with aggressive brain cancer
Patients diagnosed with a glioblastoma, and who undergo current standard treatment, have a median survival of 16 months.
Gene identified that drives deadly brain cancer
Scientists have identified a gene that is overactive in a deadly form of brain cancer known as glioblastoma, according to a study at Washington University School of Medicine in St.
Researchers find new biomarker for brain cancer prognosis
Researchers at UT Southwestern Medical Center have found a new biomarker for glioma, a common type of brain cancer, that can help doctors determine how aggressive a cancer is and that could eventually help determine the best course of treatment.
Study reveals new information on how brain cancer spreads
Glioblastoma multiforme remains the most common and highly lethal brain cancer and is known for its ability to relapse.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
Promise of better targeted treatments now possible in children's brain cancer
More than 4,000 children and teens are diagnosed with brain cancer each year and the disease kills more children than any other cancer.

Related Brain Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...