Nav: Home

New study sheds light on how mosquitoes wing it

March 30, 2017

The unique mechanisms involved in mosquito flight have been shared for the first time in a new Oxford University collaboration, which could inform future aerodynamic innovations, including tiny scale flying tech.

Much is known about mosquito behaviour but scientists have long had questions about the aerodynamics of how they manage to fly. In the past technology has not been capable of capturing high speed wing movements, but recent science developments have made it possible to track and understand the wing movements of flies.

In partnership with the Royal Veterinary College and Chiba University, scientists from Oxford's Department of Zoology analysed the insects' every movement to understand how mosquitoes fly. Well known carriers of diseases, mosquitoes' abnormally long, narrow wings and distinctive flight behaviour set them apart from other insects. Not only that, but when flapped, these wings move back and forth approximately 800 times each second - far faster than any other insect of comparable size. To compensate for these rapid movements, their stroke amplitude (the angle through which the wing sweeps) is less than half that of any other insect measured to date.

Using a combination of high-speed cameras set up in a miniature film studio, designed specifically for the project and computer simulations, the team recorded the mosquitoes' subtle three-dimensional wing movements and mapped their complex aerodynamics. The insects' insects' flight was captured using eight cameras, each recording at 10,000 frames per second.

The equipment used allowed the researchers to observe the insect's subtlest movements and these motions were replicated via computer simulation, to show the airflow produced by their beating wings, revealing that mosquitoes enhance their flight forces using two novel aerodynamic mechanisms that make use of rapid and exquisitely controlled wing rotations.

In addition to generating lift by leading-edge vortices, which are rotational, bubbles of low pressure created along the edge of the wing, mosquitos use two novel aerodynamic mechanisms to make them fly; trailing edge vortices and rotational drag. The trailing-edge vortex is a new form of 'wake capture', where the mosquitoes align their wings with the fluid flows they created during the previous wingbeat, recycling energy that would otherwise be lost to the environment.

'The usual flapping pattern of short, fast sweeps means that mosquitoes cannot rely on conventional aerodynamic mechanisms that most insects and helicopters use." says Dr Richard Bomphrey of the Royal Veterinary College, who led the study, published this week in the journal Nature. "Instead, we predicted that they must make use of clever tricks as the wings reverse their direction at the end of each half-stroke.'

Of the challenges faced during the project, Dr Simon Walker, of the Oxford Animal Flight Group in Oxford's Department of Zoology and co-author of the study said: 'Recording mosquitoes during free-flight represented a huge technical challenge due to their small size, extreme wingbeat frequency, and the presence of large antennae and legs, that can mask the view of their wings.'

These new aerodynamic mechanisms help explain the unusual shape of mosquito wings. 'In most insects, aerodynamic forces increase as you move out along the wing length because the wing tip travels faster than the wing root,' says Dr Toshiyuki Nakata, from Chiba, who ran the computer simulations. 'However, by exploiting aerodynamics that rely on rapid pitching of the wing, the force can be produced along the entire length. Having a long slender wing can therefore increase lift force and simultaneously reduce the cost of flight.'

Understanding the mechanisms that enable mosquitos and other flying insects to fly in their unique way, could support the development of aerodynamic innovations such as tiny scale flying tech, like piezoelectric actuators.

Speaking on how the findings can be built on with future research, Dr Walker said: 'Understanding the genetic make-up and physiology of mosquitos tells us how they are able to fly, but it is also the first step to understanding why. There is still much to learn from flying insects, the more we know about them, the better our chance of understanding their flight behaviour, how they carry disease and eventually how to stop them from doing so.'
-end-
Notes to editors

Research reference: 'Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight' Richard J. Bomphrey, Toshiyuki Nakata, Nathan Phillips and Simon M. Walker features in the science journal Nature: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature21727.html

Link to supplementary Information video featuring Dr. Simon Walker explaining the three aerodynamic tricks that mosquitoes perform in order to fly: https://www.youtube.com/watch?v=WPLcV5Y83WE&feature=youtu.be

Link to video of the experiment in action, scanning mosquito wings: https://youtu.be/Z3gssTzyR30

University of Oxford

Related Mosquitoes Articles:

In urban Baltimore, poor neighborhoods have more mosquitoes
A new study published in the Journal of Medical Entomology reports that in Baltimore, Maryland, neighborhoods with high levels of residential abandonment are hotspots for tiger mosquitoes (Aedes albopictus).
Researchers use light to manipulate mosquitoes
Scientists at the University of Notre Dame have found that exposure to just 10 minutes of light at night suppresses biting and manipulates flight behavior in the Anopheles gambiae mosquito, the major vector for transmission of malaria in Africa.
Mosquitoes that spread Zika virus could simultaneously transmit other viruses
A new study led by Colorado State University found that Aedes aegypti, the primary mosquito that carries Zika virus, might also transmit chikungunya and dengue viruses with one bite.
Insecticide-induced leg loss does not eliminate biting in mosquitoes
Researchers at LSTM have found that mosquitoes that lose multiple legs after contact with insecticide may still be able to spread malaria and lay eggs.
New study sheds light on how mosquitoes wing it
The unique mechanisms involved in mosquito flight have been shared for the first time in a new Oxford University collaboration, which could inform future aerodynamic innovations, including tiny scale flying tech.
For female mosquitoes, two sets of odor sensors are better than one
A team of Vanderbilt biologists has found that the malaria mosquito has a second complete set of odor receptors that are specially tuned to human scents.
Common bacterium may help control disease-bearing mosquitoes
Genes from a common bacterium can be harnessed to sterilize male insects, a tool that can potentially control populations of both disease-bearing mosquitoes and agricultural pests, researchers at Yale University and Vanderbilt University report in related studies published Feb.
Scientists opened a new chapter in the study of malaria mosquitoes
In December 2016, the American Journal of Vector Ecology published two articles by Yuri Novikov, a scientist at the TSU Biological Institute devoted to the study of ecology and the distribution one of the species of malaria mosquito of the maculipennis complex and its laboratory cultivation.
Blocking hormone activity in mosquitoes could help reduce malaria spread
Disruption of hormone signaling in mosquitoes may reduce their ability to transmit the parasite that causes malaria, according to a new study published in PLOS Pathogens.
Experimental insecticide explodes mosquitoes, not honeybees
In a new study, Vanderbilt pharmacologist Jerod Denton, Ph.D., Ohio State entomologist Peter Piermarini, Ph.D., and colleagues report an experimental molecule that inhibits kidney function in mosquitoes and thus might provide a new way to control the deadliest animal on Earth.

Related Mosquitoes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".