Calculating the impacts of natural events on wildlife

March 30, 2018

A new method could help scientists understand how wildlife populations are affected by major natural events, such as hurricanes, severe winters, and tsunamis.

The approach suggests the 2011 tsunami had an unexpectedly limited impact on organisms living in the intertidal zone of the Japanese shoreline.

Conservationists and ecologists need to be able to predict the impacts of extreme natural events on species, and to improve their understandings of how these events influence natural selection.

However, the physical units used to describe natural events--such as wind speed for hurricanes, wave height for storms, and moment magnitude for earthquakes--vary widely, making it impossible to directly compare their intensity. Wildlife populations also normally fluctuate over time, impeding the ability to judge an event's severity by looking at population size changes immediately after an event.

Hokkaido University researchers in Japan came up with an approach that uses a single unit of measurement, called a "return period," that describes how often a particular type of natural event is likely to occur and how long it takes for a species' population to rebound after an extreme event. This allows both metrics to be plotted against each other on a graph, revealing key patterns.

The researchers plotted the return periods of 27 natural events that occurred between 1946 and 2011 against the severity of their impact on 50 species. They found that wildlife populations were not affected by infrequent intense events in the same way they were affected by more frequent but weaker ones. Events that are frequent, relative to the lifespan of an organism, probably exert a strong selection pressure on species to evolve resistance against them, the researchers say in their study published in the journal Scientific Reports.

Their findings suggests the 2011 tsunami had a relatively small impact, comparable to a Pacific storm in 2006, on inhabitants of Japan's rocky tidal shoreline, such as mussels, barnacles, and algae. "This unexpectedly limited impact could be because the tsunami only lasted a few hours. A storm in 2006 off the coast of Tohoku lasting several days has a similar impact on the tidal zone species as the 2011 tsunami. Such storms occur much more frequently than tsunamis," said Takashi Noda of Hokkaido University who led the study.

The team emphasized that long-term censuses of organisms are urgently needed to improve predictions of how natural events will affect them.

Hokkaido University

Related Tsunami Articles from Brightsurf:

Landslide along Alaskan fjord could trigger tsunami
Scientists noted that the slope on Barry Arm fjord on Prince William Sound in southeastern Alaska slid some 120 meters from 2010 to 2017, a slow-moving landslide caused by glacial melt that could trigger a devastating tsunami.

Scientists improve model of landslide-induced tsunami
MIPT researchers Leopold Lobkovsky and Raissa Mazova, and their young colleagues from Nizhny Novgorod State Technical University have created a model of landslide-induced tsunamis that accounts for the initial location of the landslide body.

Rethinking tsunami defense
Careful engineering of low, plant-covered hills along shorelines can mitigate tsunami risks with less disruption of coastal life and lower costs compared to seawalls.

'Tsunami' on a silicon chip: a world first for light waves
A collaboration between the University of Sydney Nano Institute and Singapore University of Technology and Design has for the first time manipulated a light wave, or photonic information, on a silicon chip that retains its overall 'shape'.

Tsunami signals to measure glacier calving in Greenland
Scientists have employed a new method utilizing tsunami signals to calculate the calving magnitude of an ocean-terminating glacier in northwestern Greenland, uncovering correlations between calving flux and environmental factors such as air temperature, ice speed, and ocean tides.

Salish seafloor mapping identifies earthquake and tsunami risks
The central Salish Sea of the Pacific Northwest is bounded by two active fault zones that could trigger rockfalls and slumps of sediment that might lead to tsunamis, according to a presentation at the 2019 SSA Annual Meeting.

Heading towards a tsunami of light
Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation.

Paradigm shift needed for designing tsunami-resistant bridges
Researchers argue in a new study that a paradigm shift is needed for assessing bridges' tsunami risk.

How large can a tsunami be in the Caribbean?
The 2004 Indian Ocean tsunami has researchers reevaluating whether a magnitude 9.0 megathrust earthquake and resulting tsunami might also be a likely risk for the Caribbean region, seismologists reported at the SSA 2018 Annual Meeting.

Preparing for the 'silver tsunami'
Case Western Reserve University law professor suggests how to address nation's looming health-care and economic crisis caused by surging baby-boom population.

Read More: Tsunami News and Tsunami Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to