Cracking eggshell nanostructure

March 30, 2018

How is it that fertilized chicken eggs manage to resist fracture from the outside, while at the same time, are weak enough to break from the inside during chick hatching? It's all in the eggshell's nanostructure, according to a new study led by McGill University scientists.

The findings, reported today in Science Advances, could have important implications for food safety in the agro-industry.

Birds have benefited from millions of years of evolution to make the perfect eggshell, a thin, protective biomineralized chamber for embryonic growth that contains all the nutrients required for the growth of a baby chick. The shell, being not too strong, but also not too weak (being "just right" Goldilocks might say), is resistant to fracture until it's time for hatching.

But what exactly gives bird eggshells these unique features?

To find out, Marc McKee's research team in McGill's Faculty of Dentistry, together with Richard Chromik's group in Engineering and other colleagues, used new sample-preparation techniques to expose the interior of the eggshells to study their molecular nanostructure and mechanical properties.

"Eggshells are notoriously difficult to study by traditional means, because they easily break when we try to make a thin slice for imaging by electron microscopy," says McKee, who is also a professor in McGill's Department of Anatomy and Cell Biology.

"Thanks to a new focused-ion beam sectioning system recently obtained by McGill's Facility for Electron Microscopy Research, we were able to accurately and thinly cut the sample and image the interior of the shell."

Eggshells are made of both inorganic and organic matter, this being calcium-containing mineral and abundant proteins. Graduate student Dimitra Athanasiadou, the study's first author, found that a factor determining shell strength is the presence of nanostructured mineral associated with osteopontin, an eggshell protein also found in composite biological materials such as bone.

A glimpse into egg biology

The results also provide insight into the biology and development of chicken embryos in fertilized and incubated eggs. Eggs are sufficiently hard when laid and during brooding to protect them from breaking. As the chick grows inside the eggshell, it needs calcium to form its bones. During egg incubation, the inner portion of the shell dissolves to provide this mineral ion supply, while at the same time weakening the shell enough to be broken by the hatching chick. Using atomic force microscopy, and electron and X-ray imaging methods, Professor McKee's team of collaborators found that this dual-function relationship is possible thanks to minute changes in the shell's nanostructure that occurs during egg incubation.

In parallel experiments, the researchers were also able to re-create a nanostructure similar to that which they discovered in the shell by adding osteopontin to mineral crystals grown in the lab. Professor McKee believes that a better understanding of the role of proteins in the calcification events that drive eggshell hardening and strength through biomineralization could have important implications for food safety.

"About 10-20% of chicken eggs break or crack, which increases the risk of Salmonella poisoning," says McKee. "Understanding how mineral nanostructure contributes to shell strength will allow for selection of genetic traits in laying hens to produce consistently stronger eggs for enhanced food safety."
-end-
Cracking Eggshell Nanostructure video: https://www.youtube.com/watch?v=SA1EEUk7Kx8&feature=youtu.be https://www.youtube.com/watch?v=SA1EEUk7Kx8&feature=youtu.be

This work was primarily supported by grants from the Natural Sciences and Engineering Research Council and the Canadian Institutes of Health Research.

"Nanostructure, Osteopontin and Mechanical Properties of Avian Calcitic Eggshell," by D. Athanasiadou et al., Science Advances

To contact Marc McKee: marc.mckee@mcgill.ca

McGill University

Related Food Safety Articles from Brightsurf:

USDA says current poultry food safety guidelines do not stop salmonella outbreaks
Current poultry food safety guidelines for Salmonella, the leading cause of foodborne illness outbreaks, are inadequate.

Food safety model may help pandemic management
No precedent exists for managing the COVID-19 pandemic - although a plan for working through major public food scares may point to the best ways of alerting and communicating with the public.

Food safety investments open new markets, boost revenue for small farmers
A new Cornell University study finds that when small-scale farmers are trained in food safety protocols and develop a farm food safety plan, new markets open up to them, leading to an overall gain in revenue.

Researchers print, tune graphene sensors to monitor food freshness, safety
Researchers are using high-resolution printing technology and the unique properties of graphene to make low-cost biosensors to monitor food safety and livestock health.

COVID-19 from food safety and biosecurity perspective
Most recently emerged pneumonia of unknown cause named COVID-19 has a devastating impact on public health and economy surpassing its counterparts in morbidity and mortality.

Amperometric sensors assist in analyzing food safety
Antioxidants are one of the most interesting and widely investigated compounds in life sciences due to their key role in the protection of living systems from the negative effects of free radicals.

Advancing frozen food safety: UGA evaluates environmental monitoring programs
Arlington, Va. - New research funded by the Frozen Food Foundation evaluates current environmental monitoring practices being implemented across the frozen food industry to prevent and control Listeria monocytogenes (Lm).

Advancing frozen food safety: Cornell develops novel food safety assessment tool
New research funded by the Frozen Food Foundation developed a modeling tool to assist the frozen food industry with understanding and managing listeriosis risks.

Computer program aids food safety experts with pathogen testing
Cornell University scientists have developed a computer program, Environmental Monitoring With an Agent-Based Model of Listeria (EnABLe), to simulate the most likely locations in a processing facility where the deadly food-borne pathogen Listeria monocytogenes might be found.

New graphene-based sensor design could improve food safety
In the US, more than 100 food recalls were issued in 2017 because of contamination from harmful bacteria such as Listeria, Salmonella or E. coli.

Read More: Food Safety News and Food Safety Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.