Nav: Home

How animals understand numbers influences their chance of survival

March 30, 2020

While they can't pick out precise numbers, animals can comprehend that more is, well, more. From birds to bees and wolves to frogs, animals use numbers to hunt, find a mate, return to their home, and more--and researchers believe that this ability to process and represent numbers, known as numerical competence, plays an important role in how animals make these decisions and influences an animal's chance of survival. In a Review publishing March 30 in the journal Trends in Ecology and Evolution, Andreas Nieder, a neurobiologist at the University of Tuebingen, Germany, explores the current literature on how different animal species comprehend numbers and the impact on their survival, arguing that we won't fully understand the influence of numerical competence unless we study it directly.

"Interestingly, we know now that numerical competence is present on almost every branch on the animal tree of life," says Nieder, who works with different animal species to explore how trained animals discriminate and represent numbers as well as how numbers are represented in the brain. "Different groups of animals obviously developed this trait independently from other lineages and that strongly indicates that it has to be of adaptive value. So the capability to discriminate numbers has to have a strong survival benefit and reproduction benefit."

Honeybees, for instance, can remember the number of landmarks they pass when searching for food in order to find their way back to the hive. "The last common ancestor between honeybees and us primates lived about 600 million years ago," he says. "But still, they evolved numerical competence that, in many respects, is comparable to vertebrae numerical competence."

This can also be seen in animals choosing a larger amount of food over a small amount or in animals forming hunting alliances. Wolves are more likely to hunt successfully if they have the right number of wolves in their pack for the size of their prey: with prey like elk and moose, only around six to eight wolves are needed, while hunting bison requires a pack of nine to thirteen. Their prey also use this concept to protect themselves from predators--elk tend to live in smaller herds, which rarely have encounters with wolves, or gather in large herds to reduce the chance of any individual becoming prey. "So obviously they are assessing the number of individuals in their groups for their everyday life situations," Nieder says.

Furthermore, it has been shown that numerical competence even plays a role in attracting a mate. For example, male frogs sing "advertisement" calls to attract females. The females, listening for the complexity of their calls, choose the male that sings the most "chucks" in their mating call. Even once they've attracted a mate, species like the mealworm beetle and the cowbird use numerical competence to increase the likelihood of having offspring.

Despite these many examples of numerical competence in animals, this subject has not gotten many first-hand studies. "Many of these behavioral findings in the wild have usually been collected as by-products or accidental findings of other research questions," says Nieder.

Researchers do have some sense of the rules that govern numerical competence in animals, including that they count approximately rather than specifically and that two numbers need to be more different for them to tell them apart as those numbers get bigger--and it does seem apparent that those abilities are adaptive. However, Nieder argues that more research needs to be done to fully understand the selective pressures and fitness payoffs of numerical competence.

He also says that it is important to better understand the laws of perception and the underlying cognitive and neural machinery that goes into numerical competence, in order to understand how it drives fitness-related decisions. To that end, in the next year, Nieder and his lab will move toward researching how the brain and neurons process numbers in animals. "I hope I can encourage behavioral ecologists to specifically explore numerical competence in the wild, and, in doing so, also open new research fields," he says.
-end-
This work was supported by the German Research Foundation. Nieder has also recently published a book on the biology of numerical competence, A Brain for Numbers: The Biology of the Number Instinct.

Trends in Ecology & Evolution, Nieder: "The Adaptive Value of Numerical Competence" https://www.cell.com/trends/ecology-evolution/S0169-5347(20)30055-0

Trends in Ecology & Evolution (@Trends_Ecol_Evo), published by Cell Press, is a monthly review journal that contains polished, concise and readable reviews, opinions and letters in all areas of ecology and evolutionary science. It aims to keep scientists informed of new developments and ideas across the full range of ecology and evolutionary biology--from the pure to the applied, and from molecular to global. Visit: http://www.cell.com/trends/ecology-evolution. To receive Cell Press media alerts, please contact press@cell.com.

Cell Press

Related Wolves Articles:

Reintroduction of wolves tied to return of tall willows in Yellowstone National Park
The reintroduction of wolves into Yellowstone National Park is tied to the recovery of tall willows in the park, according to a new Oregon State University-led study.
Dogs and wolves are both good at cooperating
A team of researchers have found that dogs and wolves are equally good at cooperating with partners to obtain a reward.
'Wolves in sheep's clothing' -- the superbugs outsmarting laboratory tests
Hospital screening tests are failing to identify the true extent of microbial resistance, according to new research.
What wolves' teeth reveal about their lives
UCLA biologist discovers what wolves' broken teeth reveal about their lives.
Fearing cougars more than wolves, Yellowstone elk manage threats from both predators
Wolves are charismatic, conspicuous, and easy to single out as the top predator affecting populations of elk, deer, and other prey animals.
Genomics of Isle Royale wolves reveal impacts of inbreeding
A new paper explores the genetic signatures of a pair of wolves isolated on Isle Royale, a remote national park in Lake Superior.
Surprisingly, inbred isle royale wolves dwindle because of fewer harmful genes
The tiny, isolated gray wolf population on Isle Royale has withered to near-extinction, but not because each animal carries a large number of harmful genes, according to a new genetic analysis.
Wolf-dog 'swarms' threaten Europe's wolves
'Swarms' of wolf-dog crossbreeds could drive Europe's wolves out of existence, according to the lead author of new research.
The return of the wolves
Researchers examine global strategies for dealing with predators.
Wolves more prosocial than pack dogs in touchscreen experiment
In a touchscreen-based task that allowed individual animals to provide food to others, wolves behaved more prosocially toward their fellow pack members than did pack dogs.
More Wolves News and Wolves Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.