Hidden messages in protein blueprints

March 30, 2020

Scientists from the German Cancer Research Center (DKFZ) and the Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM)* and the Max Planck Institute in Freiburg have identified a new control mechanism that enables stem cells to adapt their activity in emergency situations. For this purpose, the stem cells simultaneously modify the blueprints for hundreds of proteins encoded in the gene transcripts. In this way, they control the amount of protein produced and can also control the formation of certain proteinisoforms. If this mechanism is inactivated, stem cells lose their self-renewal potential and can no longer react adequately to danger signals or inflammation.

Messenger RNA molecules (mRNAs), the transcripts of genes, serve as the blueprint for the construction of proteins. In all higher organisms, the cell attaches a long chain of adenine nucleotides, the so-called poly(A) tail, to the rear end of the transcripts in a process known as polyadenylation. The length and position of the chain varies from organism to organism and serves to stabilize the RNA molecule.

Different signaling motifs show the participating enzymes the site where the poly(A) chain is to be attached to the transcript. This does not always happen at the same site of the mRNA. The differential use of these sites is known as "alternative polyadenylation". This mechanism affects the length of the so-called 3'-untranslated end of the mRNA, a region that contains information beyond the protein sequence. This 3'-untranslated region is particularly important for stability, localisation and the efficiency with which the transcripts are translated into proteins. "Only recently it has been known that some cell types use this mechanism to control how much protein is produced per transcript and which isoform is to be expressed," says Pia Sommerkamp, the lead author of the study conducted by DKFZ and HI-STEM.

By applying a novel sequencing method, the scientists were able to identify numerous genes that are essential for stem cell development and are regulated via alternative polyadenylation during differentiation or in response to inflammation. These include the central metabolic enzyme glutaminase, which can be produced in two differently active isoforms. As the researchers found out, the activation of blood stem cells leads to a change from the less active to the highly active glutaminase isoform. This switch is coordinated by alternative polyadenylation.

"Only this isoform switch enables the stem cells to adapt all the necessary metabolic pathways according to their needs. This includes rapid increases in activity that are necessary in the case of infections or inflammations," explains Nina Cabezas-Wallscheid, who was co-supervisor of the study at the MPI in Freiburg. "With alternative polyadenylation, we have now discovered another control level with which stem cells regulate vital processes. We now want to investigate in more detail whether cancer stem cells also use this mechanism for their own purposes in leukaemias. We hope that this will provide us with new approaches for fighting the disease," explains Andreas Trumpp, Director of HI-STEM gGmbH at DKFZ and senior author of the study.
-end-
*The Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH) is a partnership between the DKFZ and the Dietmar Hopp Foundation

Pia Sommerkamp, Sandro Altamura, Simon Renders, Andreas Narr, Luisa Ladel, Petra Zeisberger, Paula Leonie Eiben, Malak Fawaz, Michael A. Rieger, Nina Cabezas-Wallscheid und Andreas Trumpp: Differential alternative polyadenylation landscapes mediate hematopoietic stem cell activation and regulate glutamin metabolism.

CELL Stem Cell 2020, DOI: https://dx.doi.org/10.1016/j.stem.2020.03.003

German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ)

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.