LANL news: High altitude water Cherenkov Observatory tests speed of light

March 30, 2020

LOS ALAMOS, N.M., March 30, 2020 -- New measurements confirm, to the highest energies yet explored, that the laws of physics hold no matter where you are or how fast you're moving. Observations of record-breaking gamma rays prove the robustness of Lorentz Invariance - a piece of Einstein's theory of relativity that predicts the speed of light is constant everywhere in the universe. The High Altitude Water Cherenkov observatory in Puebla, Mexico detected the gamma rays coming from distant galactic sources.

"How relativity behaves at very high energies has real consequences for the world around us," said Pat Harding, an astrophysicist in the Neutron Science and Technology group at Los Alamos National Laboratory and a member of the HAWC scientific collaboration. "Most quantum gravity models say the behavior of relativity will break down at very high energies. Our observation of such high-energy photons at all raises the energy scale where relativity holds by more than a factor of a hundred."

Lorentz Invariance is a key part of the Standard Model of physics. However, a number of theories about physics beyond the Standard Model suggest that Lorentz Invariance may not hold at the highest energies. If Lorentz Invariance is violated, a number of exotic phenomena become possibilities. For example, gamma rays might travel faster or slower than the conventional speed of light. If faster, those high-energy photons would decay into lower-energy particles and thus never reach Earth.

The HAWC Gamma Ray Observatory has recently detected a number of astrophysical sources which produce photons above 100 TeV (a trillion times the energy of visible light), much higher energy than is available from any earthly accelerator. Because HAWC sees these gamma rays, it extends the range that Lorentz Invariance holds by a factor of 100 times.

"Detections of even higher-energy gamma rays from astronomical distances will allow more stringent the checks on relativity. As HAWC continues to take more data in the coming years and incorporate Los Alamos-led improvements to the detector and analysis techniques at the highest energies, we will be able to study this physics even further," said Harding.
Publication: Constraints on Lorentz invariance violation from HAWC observations of gamma rays above 100 TeV, Physical Review Letters, DOI: 10.1103/PhysRevLett.124.131101


About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is managed by Triad, a public service oriented, national security science organization equally owned by its three founding members: Battelle Memorial Institute (Battelle), the Texas A&M University System (TAMUS), and the Regents of the University of California (UC) for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

DOE/Los Alamos National Laboratory

Related Gamma Rays Articles from Brightsurf:

Properties of catalysts studied with gamma ray resonance
Steam-assisted oil extraction methods for heavy deposits have long been the focus of attention at Kazan Federal University.

Strange gamma-ray heartbeat puzzles scientists
Scientists have detected a mysterious gamma-ray heartbeat coming from a cosmic gas cloud.

Physicists find ways to control gamma radiation
Researchers from Kazan Federal University, Texas A&M University and Institute of Applied Physics (Russian Academy of Sciences) found ways to direct high frequency gamma radiation by means of acoustics.

Excess neutrinos and missing gamma rays?
A new model points to the coronoe of supermassive black holes at the cores of active galaxies to help explain the excess neutrinos observed by the IceCube Neutrino Observatory.

APS tip sheet: correlating matter's distribution in the universe with gamma rays
Scientists present the first direct cross-correlation between dark matter and gamma ray emissions.

APS tip sheet: High energy gamma rays
Nine Galactic sources are the highest-energy gamma -ray sources ever detected, which could suggest the presence of Galactic accelerators.

First detection of gamma-ray burst afterglow in very-high-energy gamma light
An international team of researchers observe a gamma-ray burst, an extremely energetic flash following a cosmological cataclysm, emitting very-high-energy gamma-rays long after the initial explosion.

Gamma-ray bursts with record energy
The strongest explosions in the universe produce even more energetic radiation than previously known: Using specialised telescopes, two international teams have registered the highest energy gamma rays ever measured from so-called gamma-ray bursts, reaching about 100 billion times as much energy as visible light.

Hubble studies gamma-ray burst with highest energy ever seen
NASA's Hubble Space Telescope has given astronomers a peek at the location of the most energetic outburst ever seen in the universe -- a blast of gamma-rays a trillion times more powerful than visible light.

The highest energy gamma rays discovered by the Tibet ASgamma experiment
The Tibet ASgamma experiment, a China-Japan joint research project, has discovered the highest energy cosmic gamma rays ever observed from an astrophysical source - in this case, the 'Crab Nebula.' The experiment detected gamma rays ranging from > 100 Teraelectron volts (TeV) to an estimated 450 TeV.

Read More: Gamma Rays News and Gamma Rays Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to