Nav: Home

2,500 researchers, 1 supermachine, 1 new snapshot of the universe

March 31, 2008

Montreal, March 31, 2008 - Deep in the bowels of the earth -100 metres below ground in Geneva, Switzerland - lies a supermachine of 27 km circumference called the Large Hadron Collider (LHC) that has been built to unlock the mysteries of the universe.

Claude Leroy, a Université de Montréal physics professor, was among the 2,500 scientists from 37 countries recruited to help design, test and build the ATLAS detector at the supermachine that will provide a new perspective into what occurred at the time of the Big Bang and immediately after. Designed for CERN, the European Organization for Nuclear Research, the ATLAS detector, the largest among the four detectors operating at the supermachine in question, is 46 metres in length, 25 metres in height and 7000 tonnes in weight - or the size of three football fields.

Prof. Leroy was responsible for the radiation and irradiation studies conducted to ensure the ATLAS detector will run smoothly. His investigations also led to the creation of MPX, a small device attached throughout the supermachine and ATLAS that uses pixel silicon detectors to perform real-time measurements of the spectral characteristics and composition of radiation inside and around the ATLAS detector. The small devices essentially capture images of what's inside the detector and its environment, such neutrons and photons, a world-first.

He also participated in physics studies that targeted the production of heavy leptons, excited leptons, quarks and supersymmetry, in particular the study of neutralinos as dark matter candidates. Prof. Leroy's experiments were critical in ensuring the viability of the ATLAS detector at the core of the supermachine, which is the world's biggest particles physics detector. Indeed, before the LHC can be started up, some 38,000 tons of equipment of the supermachine must be cooled down to minus 456 degrees Fahrenheit for the magnets to operate in a superconducting state. This will be achieved by using liquid helium for magnet. Parts of the ATLAS calorimeters use liquid argon cooled at minus 312 degrees Fahrenheit. "The radiation field produced by the operation of the machine and ATLAS is stronger than a nuclear reactor, so it is vital that its design master all aspects of physics," said Prof. Leroy.

Supermachine's Big Bang

The LHC will recreate conditions akin to the Big Bang - which many scientists believe gave birth to the universe - by colliding two beams of particles at close to the speed of light. Since it is estimated that only 4 percent of the universe has been charted, the supermachine will help answer the following questions in physics when it is turned on in summer 2008:
  • What is the unknown 96 percent of the universe made of"
  • Why do particles have mass"
  • Why does nature prefer matter over antimatter"
  • What lies beyond Earth's dimension"

More on Claude Leroy:

Claude Leroy is a physics professor and head of Université de Montréal's Particle Physics Laboratory. He specializes in instrumentation and experimental particle physics, particularly rare decays of muons (heavy electrons) and pions, neutron physics, hadron collisions and applications of semiconductors in particle physics experiments. He collaborates with the Canada-based TRIUMF Laboratory and the physics of high energy collisions at the Swiss-based CERN Laboratory. Leroy is member of the board of the Institute of Experimental and Applied Physics of the Czech Technical University in Prague and Vancouver-based TRIUMF Laboratory. He is Fellow of the Royal Society of Canada, CERN Scientific Associate and Honorary Professor of the National University of Peru. He is fluent in several languages and is passionate about Chinese culture and history.

On the Web:

About ATLAS:
About TRIUMF Laboratory:
About CERN:

For more information:
Sylvain-Jacques Desjardins
International press attaché
Université de Montréal
Telephone: 514-343-7593
Email :

University of Montreal

Related Radiation Articles:

A new way to monitor cancer radiation therapy doses
More than half of all cancer patients undergo radiation therapy and the dose is critical.
Nimotuzumab-cisplatin-radiation versus cisplatin-radiation in HPV negative oropharyngeal cancer
Oncotarget Volume 11, Issue 4: In this study, locally advanced head and neck cancer patients undergoing definitive chemoradiation were randomly allocated to weekly cisplatin - radiation {CRT arm} or nimotuzumab -weekly cisplatin -radiation {NCRT arm}.
Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.
Radiation breaks connections in the brain
One of the potentially life-altering side effects that patients experience after cranial radiotherapy for brain cancer is cognitive impairment.
Fragmenting ions and radiation sensitizers
The anti-cancer drug 5-fluorouracil (5FU) acts as a radiosensitizer: it is rapidly taken up into the DNA of cancer cells, making the cells more sensitive to radiotherapy.
'Seeing the light' behind radiation therapy
Delivering just the right dose of radiation for cancer patients is a delicate balance in their treatment regime.
Radiation contamination at a crematorium
Radioactive compounds known as radiopharmaceuticals are used in nuclear medicine procedures to diagnose and treat disease.
First study of terahertz radiation in liquids
A research team from ITMO University and the University of Rochester (the USA) conducted a study on the formation of terahertz radiation in liquids.
A new way to create Saturn's radiation belts
A team of international scientists from BAS, University of Iowa and GFZ German Research Centre for Geosciences has discovered a new method to explain how radiation belts are formed around the planet Saturn.
A better device for measuring electromagnetic radiation
Researchers have developed a better bolometer, a device for measuring electromagnetic radiation.
More Radiation News and Radiation Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at