Songbird's genome to provide clues on language learning -- and relearning

March 31, 2010

DURHAM, N.C. -- The genome of the Australian zebra finch - being published April 1 in Nature - sets a framework that could provide insights into how humans learn language and new ways of studying speech disorders.

Researchers who collaborated on the finch genome found a much higher proportion of the bird's DNA is actively engaged by the act of singing songs.

"The system for singing has much more complexity than we imagined," said co-author Erich Jarvis, Ph.D., Duke professor of neurobiology and a Howard Hughes Medical Institute Investigator. "In the part of the brain that controls learning how to sing, about 5 percent of the genes are regulated by the action of singing. I thought there might be 100 genes, but our laboratory found that there are at least 800 regulated genes turning off and on, and there may be many more."

Jarvis was the first to discover that singing altered genetic activity in songbirds. "We were also able for the first time to use the genome sequence to infer the regulatory regions that turn genes on and off and the manner in which they may interact," he said.

The new work may help scientists understand how humans learn language. It also could help identify the genetic and molecular origins of speech disorders, including those related to autism, stroke, stuttering and Parkinson's Disease, the researchers say. The findings could also have an impact on research into deafness and language learning after the critical learning period.

"Overall, the genome will help researchers worldwide learn about the genes responsible for developing neural circuits for critical periods of learning, study the effect of hormones on brain and behavior, and provide further information for a model of sex-related brain differences," Jarvis said. "During juvenile development, the female song-learning brain regions and ability atrophy."

Among some songbird species, like the zebra finch, females select the best male based on the quality of his song. As babies, the males learn to sing by listening to their fathers. A good pupil will attract a mate and pass on successful vocal skills to the next generation.

Jarvis noted that sequencing additional genomes, like the parrot genome his lab is working on with the Warren laboratory, would contribute valuable information about spoken language.

The zebra finch is only the second bird to have its genome decoded. The first was the chicken. Unlike the chicken, which clucks but does not communicate by vocal learning, the zebra finch contains a specialized forebrain pathway to learn bird song.

In order to perform comparative analyses between these and other species, the Jarvis lab has developed a public bird genome web site called aviangenomes.org.
-end-
The study was funded by the National Human Genome Research Institute, part of the National Institutes of Health (NIH). Jarvis' contribution to the project was funded by the NIH Director's Pioneer Award, the National Institute of Deafness and Communication Disorders, and the Howard Hughes Medical Institute.

Other co-authors from Duke University include Osceola Whitney, Andreas Pfenning, and Jason Howard. More than 20 institutions worldwide collaborated on the zebra finch genome project. The organizing committee of the zebra finch genome sequencing project included Wes Warren of Washington University School of Medicine; David Clayton of the University of Illinois at Urbana-Champaign, Hans Ellegren of Uppsala University in Sweden; and Arthur P. Arnold of the University of California-Los Angeles.

Duke University Medical Center

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.