Stem cell therapy to tackle HIV

March 31, 2010

A novel stem cell therapy that arms the immune system with an intrinsic defence against HIV could be a powerful strategy to tackle the disease.

Professor Ben Berkhout speaking at the Society for General Microbiology's spring meeting in Edinburgh today explains how this new approach could dramatically improve the quality of life and life expectancy for HIV sufferers in whom antiviral drugs are no longer effective.

In the absence of an effective vaccine, daily administration of anti-retroviral drugs is the most effective treatment for HIV. However, low patient compliance rates combined with the virus's ability to easily mutate has led to the emergence of drug-resistant strains that are difficult to treat.

Professor Berkhout from the University of Amsterdam is investigating a novel gene therapy that has long-lasting effects even after a single treatment. It involves delivering antiviral DNA to the patients' own immune cells that arms them against viral infection. "This therapy would offer an alternative for HIV-infected patients that can no longer be treated with regular antivirals," he suggested.

The therapy involves extracting and purifying blood stem cells from the patient's bone marrow. Antiviral DNA is transferred to the cells in the laboratory, after which the cells are re-injected into the body. The DNA encodes tiny molecules called small RNAs that are the mirror image of key viral genes used by HIV to cause disease. The small RNAs float around inside the immune cell until they encounter viral genes which they can stick to like Velcro™. This mechanism, called 'RNA interference' can block the production of key viral components from these genes.

Transferring the antiviral DNA to stem cells would help to restore a large part of the patient's immune system. "Stem cells are the continually dividing 'master copy' cells from which all other immune cells are derived. By engineering the stem cells, the antiviral DNA is inherited by all the immune cells that are born from it," explained Professor Berkhout.

The group hopes to start clinical trials of the therapy within 3 years. "So far, very promising results have been obtained in the laboratory, and we are now testing the safety and efficacy in a pre-clinical mouse model," said Professor Berkhout.
-end-


Microbiology Society

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.