New 'mouse models' give insight to gene mutation that is potential cause of Parkinson's disease

March 31, 2010

Using new one-of-a-kind "mouse models" that promise to have a significant impact on future Parkinson's disease research, Mount Sinai School of Medicine researchers are among the first to discover how mutations in a gene called LRRK2 may cause inherited (or "familial") Parkinson's disease, the most common form of the disease. The study, published in The Journal of Neuroscience, is the first in vivo evidence that LRRK2 regulates dopamine transmission and controls motor performance, and that the mutation of LRRK2 eliminates the normal function of LRRK2, leading to Parkinson's disease.

Even though it was clear that LRRK2 played a role in causing Parkinson's, scientists had not been able to fully pursue the discovery of the gene mutation due to lack of a suitable animal model with abnormal forms of the gene. By using the new mouse model, Zhenyu Yue, PhD, Associate Professor of Neurology and Neuroscience, and his colleagues at Mount Sinai School of Medicine demonstrated that these mice capture a key feature of Parkinson's disease--age-dependent reduction of neurotransmitter dopamine--which is believed to cause motor function deficits in humans such as tremors, rigidity, and involuntary movement over time.

"While the mice are not at the stage where they experience the typical symptoms of Parkinson's, like tremors or reduced movement, we are able to study the potential root cause of the disease in these mice," said Dr. Yue. "Importantly, as we have developed assays that allow us to measure the enzymatic activity of LRRK2 in the brain, the mouse models provide valuable tools in the preclinical development of drug compounds that target aberrant LRRK2 activity. This research may translate to non-familial Parkinson's disease as well."

In the study, Dr. Yue developed two mouse models with the normal or mutant LRRK2 using an advanced form of genetic engineering called bacterial artificial chromosome genetics (BAC). BAC gives scientists more control over where and when a foreign gene is expressed in the target animal. Dr. Yue and his team genetically engineered a fragment of genomic DNA containing a human Parkinson's disease mutation of LRRK2 and injected it into the mice.

How LRRK2 functions is unknown, but Dr. Yue and his team showed that the mutant LRRK2 produces too much so-called kinase activity in the brain. They are now pursuing the question whether the increased kinase activity accounts for the reduced dopamine levels, subsequently leading to neurodegeneration.

"Not having a mouse model has been a significant barrier to bringing the LRRK2 breakthrough from bench to bedside," said Dr. Yue. "The new model likely replicates the earliest stage of Parkinson's disease, giving us the opportunity to understand the biochemical and molecular events that cause the disease."
-end-
About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses The Mount Sinai Hospital and Mount Sinai School of Medicine. The Mount Sinai Hospital is one of the nation's oldest, largest and most-respected voluntary hospitals. Founded in 1852, Mount Sinai today is a 1,171-bed tertiary-care teaching facility that is internationally acclaimed for excellence in clinical care. Last year, nearly 60,000 people were treated at Mount Sinai as inpatients, and there were nearly 450,000 outpatient visits to the Medical Center.

Mount Sinai School of Medicine is internationally recognized as a leader in groundbreaking clinical and basic science research, as well as having an innovative approach to medical education. With a faculty of more than 3,400 in 38 clinical and basic science departments and centers, Mount Sinai ranks among the top 20 medical schools in receipt of National Institute of Health (NIH) grants. For more information, please visit www.mountsinai.org.

The Mount Sinai Hospital / Mount Sinai School of Medicine

Related Neuroscience Articles from Brightsurf:

Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.

The evolution of neuroscience as a research
When the first issue of the JDR was published, the field of neuroscience did not exist but over subsequent decades neuroscience has emerged as a scientific field that has particular relevance to dentistry.

Diabetes-Alzheimer's link explored at Neuroscience 2019
Surprising links exist between diabetes and Alzheimer's disease, and researchers are beginning to unpack the pathology that connects the two.

Organoid research revealed at Neuroscience 2019
Mini-brains, also called organoids, may offer breakthroughs in clinical research by allowing scientists to study human brain cells without a human subject.

The neuroscience of autism: New clues for how condition begins
UNC School of Medicine scientists found that a gene mutation linked to autism normally works to organize the scaffolding of brain cells called radial progenitors necessary for the orderly formation of the brain.

Harnessing reliability for neuroscience research
Neuroscientists are amassing the large-scale datasets needed to study individual differences and identify biomarkers.

Blue Brain solves a century-old neuroscience problem
In a front-cover paper published in Cerebral Cortex, EPFL's Blue Brain Project, a Swiss Brain Research Initiative, explains how the shapes of neurons can be classified using mathematical methods from the field of algebraic topology.

Characterizing pig hippocampus could improve translational neuroscience
Researchers have taken further steps toward developing a superior animal model of neurological conditions such as traumatic brain injury and epilepsy, according to a study of miniature pigs published in eNeuro.

The neuroscience of human vocal pitch
Among primates, humans are uniquely able to consciously control the pitch of their voices, making it possible to hit high notes in singing or stress a word in a sentence to convey meaning.

Study tackles neuroscience claims to have disproved 'free will'
For several decades, some researchers have argued that neuroscience studies prove human actions are driven by external stimuli -- that the brain is reactive and free will is an illusion.

Read More: Neuroscience News and Neuroscience Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.