From a classical laser to a 'quantum laser'

March 31, 2010

Rainer Blatt's and Piet Schmidt's research team from the University of Innsbruck have successfully realized a single-atom laser, which shows the properties of a classical laser as well as quantum mechanical properties of the atom-photon interaction. The scientists have published their findings in the journal Nature Physics.

The first laser was developed 50 years ago. Today we cannot imagine life without the artificially produced light waves - lasers have become an integral part of many appliances used in telecommunication, household, medicine, and research. A laser normally consists of a gain medium, which is electrically or optically pumped, inside a highly reflective optical cavity (or resonator). The light in the cavity bounces back and forth in the form of modes whereby it is amplified repeatedly. One of the distinctive features of a classical laser is the steep increase of output power when a certain pumping threshold is reached. At this point the gain (amplification by the medium) equals the losses as the light circulates through the cavity. This is caused by the amplification of the interaction between light and atoms: The more photons are present in a mode the stronger the amplification of the light in the mode. This stimulated emission is usually observed in macroscopic lasers comprising of many atoms and photons.

The Innsbruck researchers have demonstrated that a laser threshold can be achieved at the smallest possible building block of a laser: a single atom, which interacts with a single mode in an optical cavity. A single calcium ion is confined in an ion trap and excited by external lasers. A high-finesse optical cavity consists of two mirrors, which traps and accumulates the photons emitted by the ion into a mode. The ion is excited cyclically by an external laser and at each cycle a photon is added to the cavity mode, which amplifies the light.

For strong atom-cavity coupling the regime of atom and cavity shows quantum mechanical behavior: Only single photons can be introduced into the cavity. "As a consequence, stimulated emission and threshold are absent," explains François Dubin, a French postdoc and first author of the publication. A 'quantum laser' was demonstrated in a similar regime some years ago. What is new in the experiment of the Innsbruck researchers is the ability to tune the coupling of the atom to the cavity mode. By choosing the right parameter of the drive laser, the physicists were able to achieve stronger excitation and, consequently, add more photons to the cavity. Although there was still less than one photon in the cavity, the researchers observed stimulated emission in the form of a threshold. "A single atom is a very weak amplifier. As a consequence, the threshold is much less pronounced than in classical lasers," explains Piet Schmidt.

An even stronger excitation does not result in a higher output, which is the case in a conventional laser, but in the quenching of the output due to quantum mechanical interference. This constitutes an intrinsic limitation of miniature single-atom lasers. Therefore, researchers from the University of Innsbruck want to further investigate the transition between quantum and classical lasers through the controlled addition of more and more ions interacting with the light field.
-end-
This research work is supported by the Austrian Science Fund, the European Commission and the Federation of Austrian Industry Tirol.

University of Innsbruck

Related Photons Articles from Brightsurf:

An electrical trigger fires single, identical photons
Researchers at Berkeley Lab have found a way to generate single, identical photons on demand.

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.

The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Photons News and Photons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.