NIH investigators find link between DNA damage and immune response

March 31, 2011

Researchers offer the first evidence that DNA damage can lead to the regulation of inflammatory responses, the body's reaction to injury. The proteins involved in the regulation help protect the body from infection.

The study, performed by scientists at the National Institute of Environmental Health Sciences (NIEHS), which is part of the National Institutes of Health, is one of the first studies to come out of the recently established NIEHS Clinical Research Unit (CRU) (http://www.niehs.nih.gov/research/clinical/join/durham/index.cfm).

Appearing in the March 31 issue of PLoS Genetics, the research suggests that an injury to chromosomes alters the expression of a family of genes known as Toll-like receptors (TLRs). TLRs are proteins that play a role in the immune system by defending the body from infection. Following damage, the TLRs interact with the tumor suppressor gene p53 to regulate the amount of inflammation. The NIEHS investigators also establish that the integration of p53 and inflammation only occurs in primates.

Healthy volunteers with informed consent donated their blood cells for the study. The scientists separated white blood cells from the samples and exposed the cells to anti-cancer agents to activate p53. They then examined the expression of TLR genes. The team detected large variations among individuals, but found that p53 generally led to the activation of several TLR genes in patients' cells. They also found that TLR activation could be prevented by adding the p53 inhibitor pifithrin.

"We would not have found this connection if we only worked with rat or mice cells," said Michael Resnick, Ph.D., principal investigator in the Laboratory of Molecular Genetics (LMG) and corresponding author on the paper. "We needed to have human samples, so our collaboration with the CRU was crucial for these experiments."

Stavros Garantziotis, M.D., a principal investigator in the Laboratory of Respiratory Biology (LRB) and the medical director for the CRU, is a co-author on the article. He said that the publication had two main findings: humans evolved an inflammatory response when subjected to DNA damage, and the variation in TLR activity among humans suggests that some people are more prone to inflammation following DNA damage, for example, after receiving cancer therapy.

"Physicians don't have this information now, but understanding who would likely benefit from anti-inflammatory treatment after chemotherapy would greatly increase a doctor's ability to help his or her patient in the future," Garantziotis continued.

As a physician and co-author of the publication, LRB principal investigator Michael Fessler, M.D., went a step further in his explanation of how stimulating the human immune system could treat infection, and autoimmune and environmental diseases.

"The immune system very likely plays a role, not only in all inflammatory diseases that afflict humans, but also in cancer," Fessler concluded. "Because of the new connection discussed in our paper, we may have a new means to manipulate the responses that affect those diseases."

Now, the researchers are taking advantage of another NIEHS translational program, the Environmental Polymorphisms Registry (EPR) (http://www.niehs.nih.gov/research/clinical/join/epr/index.cfm), an ongoing study to collect DNA samples from nearly 20,000 North Carolinians. The EPR study will allow scientists to look for genes linked to disease. The study is a collaborative effort between NIEHS and the General Clinical Research Center at the University of North Carolina at Chapel Hill.

Daniel Menendez, Ph.D., and Maria Shatz, Ph.D., are two LMG scientists who share first authorship on the paper. Menendez added that the EPR work will permit researchers to further examine the association between p53 and inflammation. "In related studies, we are looking at individuals who have genetic alterations in the way they might respond to p53 activation," he said. "We will try to determine if their cells behave differently, and if these subjects have changes in their inflammatory response, or an increased risk for certain inflammatory diseases."
-end-
Reference: Menendez D*, Shatz M*, Azzam K, Garantziotis S, Fessler MB, Resnick MA. 2011. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks. PLoS Genet [Online 31 March 2011]. (*co-first authors)

The NIEHS supports research to understand the effects of the environment on human health and is part of NIH. For more information on environmental health topics, visit www.niehs.nih.gov. Subscribe to one or more of the NIEHS news lists (www.niehs.nih.gov/news/releases/newslist/index.cfm) to stay current on NIEHS news, press releases, grant opportunities, training, events, and publications.

The National Institutes of Health (NIH) -- The Nation's Medical Research Agency -- includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH/National Institute of Environmental Health Sciences

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.