Charge it: Neutral atoms made to act like electrically charged particles

March 31, 2011

Completing the story they started by creating synthetic magnetic fields,* scientists from the Joint Quantum Institute (JQI), a collaboration of the National Institute of Standards and Technology (NIST) and the University of Maryland, have now made atoms act as if they were charged particles accelerated by electric fields.

Reported in the journal Nature Physics,** these synthetic electric fields make each atom in a gas act, individually, as if it were a charged particle, but collectively they remain neutral, uncharged particles. This dual personality will help researchers simulate and study fundamental electrical phenomena and may lead to a deeper understanding of exotic phenomena involving charged particles such as superconductivity, the flow of electricity without resistance, or the quantum Hall effect, used by NIST to create a standard of electrical resistance.

Some aspects of electricity are difficult to study because, although oppositely charged particles are attracted to one another, similarly charged particles are repelled by one another. To get around this, NIST physicist Ian Spielman and his colleagues realized that they could make atoms, which are typically electrically neutral, act as if they are charged particles in an electric field--extending their earlier method for making neutral atoms act like charged particles in a magnetic field.

The researchers create their synthetic electric field in an ultracold gas of several hundred thousand rubidium atoms. Using lasers, the team alters the atoms' energy-momentum relationship. This had the effect of transferring a bit of the lasers' momentum to the atoms, causing them to move. The force on each atom is physically identical--and mathematically equivalent--to what a charged particle would feel in an electric field.

So while the neutral atoms each experience the force of this synthetic electric field individually, they do not repel each other as would true charged particles in an ordinary electric field. This is analogous to an experienced group of dancers all following the moves of their instructor without getting in each other's way.

According to Spielman, this work may enable scientists to study the Hall effect, a phenomenon where an electromagnetic field can cause charged particles traveling through a conductor to experience a sideways force, which has of yet been unobserved in cold-atom systems. The work may also facilitate measurements of the atomic equivalents of electrical quantities such as resistance and inductance. For neutral atoms in synthetic electric fields, inductance is a measure of the energy that is stored as a result of the atoms' motion, and resistance is a measure of the dissipation, or energy loss, in the system. Measuring these quantities could provide insights into the properties of charged particles in analogous systems, including superconductors.
-end-
* See "JQI Researchers Create 'Synthetic Magnetic Fields' for Neutral Atoms," Dec. 15, 2009, at www.nist.gov/pml/div684/synthetic_121509.cfm.

** Y-J. Lin, R. L. Compton, K. Jiménez-García, W. D. Phillips, J. V. Porto and I. B. Spielman, A synthetic electric force acting on neutral atoms, Nature Physics. Published online March 20, 2011.

National Institute of Standards and Technology (NIST)

Related Atoms Articles from Brightsurf:

How to gently caress atoms
It is extremely difficult to study oxygen molecules on the metal oxide surface without altering them.

'Hot and messy' entanglement of 15 trillion atoms
In a study published in Nature Communications, ICFO, HDU and UPV researchers report the production of a giant entangled state that may help medical researchers detect extremely faint magnetic signals from the brain.

Exciting apparatus helps atoms see the light
Researchers in the Light-Matter Interactions for Quantum Technologies Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) have generated Rydberg atoms - unusually large excited atoms - near nanometer-thin optical fibers.

Manipulating atoms to make better superconductors
A new study by University of Illinois at Chicago researchers published in the journal Nature Communications shows that it is possible to manipulate individual atoms so that they begin working in a collective pattern that has the potential to become superconducting at higher temperatures.

Grabbing atoms
In a first for quantum physics, University of Otago researchers have 'held' individual atoms in place and observed previously unseen complex atomic interactions.

Chemists allow boron atoms to migrate
Organic molecules with atoms of the semi-metal boron are important building blocks for synthesis products to produce drugs and agricultural chemicals.

2D materials: arrangement of atoms measured in silicene
Silicene consists of a single layer of silicon atoms. In contrast to the ultra-flat material graphene, which is made of carbon, silicene shows surface irregularities that influence its electronic properties.

Atoms don't like jumping rope
Nanooptical traps are a promising building block for quantum technologies.

2000 atoms in two places at once
The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna.

Single atoms as catalysts
Only the outermost layer of a catalyst can play a role in chemical reactions.

Read More: Atoms News and Atoms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.