Nav: Home

Picturing peanut contamination with near infrared hyperspectral imaging

March 31, 2015

Study the label of almost any food product and you're likely to see the rather vague warning "May contain peanuts" somewhere on there, unless of course it's a product that definitely does contain peanuts. As now revealed in a paper in the latest issue of JNIRS--Journal of Near Infrared Spectroscopy, these warnings of peanut contamination could soon lose much of their uncertainty, thanks to a novel form of near infrared (NIR) spectroscopy known as NIR hyperspectral imaging (HSI).

Any food product may contain traces of peanut if it is made with powdered foodstuffs like wheat flour that were ground up in a facility that also grinds up peanuts, as it can be impossible to prevent contamination from occurring. Even at trace levels, this contamination can be a major problem for individuals who are allergic to peanuts, potentially triggering a life-threatening reaction.

Rather than offering a vague warning, food manufacturers would much rather know for sure whether a powdered foodstuff contains trace amounts of peanut and at exactly what concentration. Although there are several techniques for detecting peanut contamination, they tend to be time-consuming and only work with small samples, which may not be representative of the foodstuff as a whole.

A faster method for detecting peanut contamination is offered by NIR spectroscopy, an analytical technique that detects specific molecules based on their absorption and reflection of light at near infrared wavelengths. Scientists have already shown that peanut powder generates different NIR spectra to various other powdered foodstuffs, including wheat flour, milk and cocoa, allowing any contamination to be detected.

The problem with conventional NIR spectroscopy is that it collects an average NIR spectrum over a large area, meaning that trace peanut contamination may be missed. So a team of scientists at the LPF-TAGRALIA, Universidad Politécnica de Madrid (UPM) in Spain and the Institute National de Recherche en Sciences et Technologies pour L'environnement et L'agriculture (IRSTEA) in France decided to try to solve this problem using NIR HSI, which produces images in which every pixel contains spectral data.

Each pixel can thus contain information about peanut contamination, making NIR HSI much more sensitive than conventional NIR spectroscopy and allowing it to detect trace levels of peanut over a large area. As a first test, the team of scientists confirmed that peanut powder generates different NIR spectra to wheat flour when analysed by NIR HSI, allowing the two powders to be distinguished from each other.

Next, they developed a scoring system that could determine whether or not specific pixels in an image of wheat flour contained peanut powder from their NIR spectra. Using this scoring system, they could then estimate the level of contamination by simply determining the percentage of pixels that contained peanut powder.

They tested this system on samples of wheat flour spiked with powder from four different types of peanut, including raw, blanched and roasted, at concentrations varying between 0.01% and 10%. The system was able to detect peanut contamination even at 0.01%, although it could only accurately determine the level of contamination at between 0.1% and 10%. "These results show the feasibility of using HSI systems for detecting traces of peanut and similar products that are present in low percentages in powder foods with contrasting spectra," says lead researcher Puneet Mishra at UPM.

Mishra and his colleagues are now looking to apply the same technique to detecting contamination by other nuts, which can also cause serious allergic reactions. "Although peanut is the most common cause of nut allergy, peanut allergic patients are frequently also sensitive to tree nuts," he explains. "We are presently sampling different tree nut mixtures of almond, walnut and hazelnut to check the feasibility of HSI for detecting them."
-end-
The research is published as:

P. Mishra, A. Herrero-Langreo, P. Barreiro, J.M. Roger, B. Diezma, N. Gorretta and L. Lleó, "Detection and quantification of peanut traces in wheat flour by near infrared hyperspectral imaging spectroscopy using principal-component analysis", J. Near Infrared Spectrosc. 23(1), 15-22 (2015). doi: http://dx.doi.org/10.1255/jnirs.1141

IM Publications LLP

Related Spectroscopy Articles:

Unraveling the optical parameters: New method to optimize plasmon enhanced spectroscopy
Plasmon enhanced spectroscopies allow to reach single molecule sensitivity and a lateral resolution even down to sub-molecular resolution.
Nanoscale spectroscopy review showcases a bright future
A new review authored by international leaders in their field, and published in Nature, focuses on the luminescent nanoparticles at the heart of many advances and the opportunities and challenges for these technologies to reach their full potential.
Researchers combine advanced spectroscopy technique with video-rate imaging
For the first time, researchers have used an advanced analytical technique known as dual-comb spectroscopy to rapidly acquire extremely detailed hyperspectral images.
Quantum logic spectroscopy unlocks potential of highly charged ions
Scientists from the PTB and the Max Planck Institute for Nuclear Physics (MPIK), both Germany, have carried out pioneering optical measurements of highly charged ions with unprecedented precision.
Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.
Fluorescence spectroscopy helps to evaluate meat quality
Scientists of Sechenov University jointly with their colleagues from Australia proposed a new, quicker and cheaper way to assess meat quality.
Single-particle spectroscopy of CsPbBr3 perovskite reveals the origin low electrolumine
Researchers from Tokyo Institute of Technology (Tokyo Tech) used the method of single-particle spectroscopy to study electroluminescence in light-emitting devices.
'Resonance' raman spectroscopy with 1-nm resolution
Tip-enhanced Raman spectroscopy resolved 'resonance' Raman scattering with 1-nm resolution in ultrathin zinc oxide films epitaxially grown on a single-crystal silver surface.
Improved functional near infrared spectroscopy enables enhanced brain imaging
In an article published in the peer-reviewed SPIE publication Neurophotonics, 'High density functional diffuse optical tomography based on frequency domain measurements improves image quality and spatial resolution,' researchers demonstrate critical improvements to functional Near Infrared Spectroscopy (fNIRS)-based optical imaging in the brain.
Raman spectroscopy poised to make thyroid cancer diagnosis less invasive
Researchers have demonstrated that an optical technique known as Raman spectroscopy can be used to differentiate between benign and cancerous thyroid cells.
More Spectroscopy News and Spectroscopy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.