Nav: Home

IUPUI chemist working to improve drug and poison screening in forensics

March 31, 2015

INDIANAPOLIS -- On "CSI," "NCIS" and other popular television shows, mass spectrometers rapidly analyze biological samples and spit out definitive results of complex analyses. But in real life, mass spectrometry findings are less straightforward and slower paced.

Indiana University-Purdue University Indianapolis analytical chemist Nicholas E. Manicke has received a $273,826 award from the U.S. Department of Justice's National Institute of Justice to improve the speed and accuracy of mass spectrometry for detecting drugs and poisons in blood samples.

"Current technology does not meet the demand for rapid, effective and simple drug screening methodologies for forensic toxicology applications," said Manicke, assistant professor of chemistry and chemical biology and a faculty member of the School of Science's Forensic and Investigative Sciences Program at Indiana University-Purdue University Indianapolis.

With the NIJ award, Manicke will proceed with his work to simultaneously advance the quality and throughput rate of mass spectrometry analysis of biosamples, specifically blood samples, to determine cause of death. The participation of an IUPUI graduate student in the project is supported by the grant, and several undergraduates will also be involved.

"Hundreds of common drugs could cause death. Current broad screening and detection methods catch wide swaths but are not ideal," said Manicke. "Unfortunately, the large number of false positives that arise from current screening methods increase the burden for laboratories to do confirmatory tests. Also, their poor sensitivity can mean that drugs at low concentrations may not be detected at all during the initial screen."

"AIT Laboratories, an Indianapolis-based company specializing in toxicological analyses, will help in the testing of this new approach to drug screening," Manicke said. "AIT Labs will provide real forensic specimens for testing, and the results we obtain will be validated against their standard confirmatory tests."

Before joining the IUPUI faculty in 2013, Manicke and colleagues at Purdue University, where he completed graduate studies and served as a postdoctoral research associate, developed paper spray. A mass spectrometry ionization method, paper spray allows for quantitative and qualitative analysis from complex samples without prior sample purification.

In a study published in June 2014 in the American Chemical Society's peer-reviewed journal Analytical Chemistry, Manicke and colleagues reported on the successful use of paper spray to detect very low concentrations of eight common drugs of abuse in blood samples. This work demonstrated the value of paper spray for rapid investigation of biological samples, allowing for the direct analysis of complex samples without the laborious sample preparation process normally associated with mass spectrometry.

Manicke said that because of its sensitivity and specificity, the paper spray mass spectrometry method has potential use in such diverse fields as biomedical research and clinical testing, homeland security, drug screening and food safety, in addition to forensic science.

"The development of paper spray mass spectrometry, which requires no sample preparation, has been driven primarily by the need for faster and simpler procedures for the analysis of drugs and pharmaceuticals directly from whole blood," he said. "With this support from the National Institute of Justice we hope to develop paper spray mass spectrometry into an effective drug screening tool for applications in forensic toxicology, particularly analysis of postmortem blood samples."
The School of Science at IUPUI is committed to excellence in teaching, research and service in the biological, physical, behavioral and mathematical sciences. The school is dedicated to being a leading resource for interdisciplinary research and science education in support of Indiana's effort to expand and diversify its economy.

Indiana University-Purdue University Indianapolis School of Science

Related Mass Spectrometry Articles:

Proximity of hospitals to mass shootings in US
Nontrauma center hospitals were the nearest hospitals to most of the mass shootings (five or more people injured or killed by a gun) that happened in the US in 2019.
Chemists use mass spectrometry tools to determine age of fingerprints
Chemists at Iowa State University may have solved a puzzle of forensic science: How do you determine the age of a fingerprint?
Keeping guns away from potential mass shooters
Researchers from Michigan State University measured the extent to which mass shootings are committed by domestic violence perpetrators, as well as identyifying how they illegally obtain guns, suggesting how firearm restrictions may prevent these tragedies.
Who is left behind in Mass Drug Administration?
Ensuring equity in the prevention of neglected tropical diseases (NTDs) is critical to reach NTD elimination goals as well as to inform Universal Health Coverage (UHC).
A mechanism capable of preserving muscle mass
By studying the young and aging muscles in mice, researchers from the Myology Research Center (Sorbonne Universite-Inserm) of the Institute of Myology identified a protein, CaVbeta1E that activates the factor GDF5.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
Changes in gun purchases after mass shootings
For this analysis, researchers examined monthly data on US background checks for gun purchases and permits from November 1998 through April 2016, and they looked for purchasing trends after mass shootings during that time.
Study links perimenopause to accelerated fat mass gains, lean mass losses
A UCLA-led study confirms what women approaching menopause have long suspected: menopause does make fat go up.
Paleontology: Diversification after mass extinction
A team led by Ludwig-Maximilians-Universitaet in Munich paleontologist Adriana López-Arbarello has identified three hitherto unknown fossil fish species in the Swiss Alps, which provide new insights into the diversification of the genus Eosemionotus.
Mass spectrometry sheds new light on thallium poisoning cold case
In 1994, Chinese university student Zhu Ling began experiencing stomach pain, hair loss and partial paralysis.
More Mass Spectrometry News and Mass Spectrometry Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at