Nav: Home

Using patients' own cells to accelerate research into neurological disease

March 31, 2015

A patient's very own skin cells may hold the key to new treatments and even cures for devastating neurological diseases. A generous $1 million donation from Mr. J. Sebastian van Berkom, and critical partnerships with Brain Canada, Laval University, Marigold Foundation and the FRQS-Réseau Parkinson Quebec are driving an innovative, iPSC (induced pluripotent stem cell) research platform that will transform research into Parkinson's and other neurological diseases.

Millions of Canadians are affected by diseases of the brain such as ALS, Parkinson's and brain tumours, for which there are limited treatments and no cures. By 2020, neurological conditions will become the leading cause of death and disability. "Everyone's lives are touched in some way by neurological disease, says Mr. van Berkom, President of Van Berkom and Associates Inc." In creating The van Berkom Parkinson's Disease Open-Access Fund, I hope to change lives and support new research that will lead to new treatments and one day cures. The iPSC platform is a new paradigm for neuroscience research and as one of the world's great neuroscience centres, The Neuro is the place to drive it forward."

"This is the ultimate bench to bedside paradigm, from patient to the bench, back to the patient," says Dr. Guy Rouleau, Director of The Neuro. "With a unique interface between fundamental and clinical research, The Neuro is uniquely positioned to be a central hub in the iPSC platform. Partnering with Mr. Van Berkom, a generous and visionary philanthropist, propels The Neuro toward the goal of significantly deepening insight into disease mechanisms with unprecedented efficiency."

Patients' skin cells will be reprogrammed into induced pluripotent stem cells (iPSCs) at Laval University, under the leadership of Dr Jack Puymirat, and then differentiated at The Neuro into disease relevant cells for research. For example, in the case of Parkinson's this could be dopamine neurons. The cells can also be genome-edited, a state-of-the-art technique that can introduce or correct disease associated mutations - creating the most accurate disease models. These iPSCs will be made widely and openly available to researchers across Quebec for neuroscience research. This open-access approach exponentially increases the likelihood of breakthroughs in neurological disease.

"The unique and exciting aspect of this platform is that we are creating the most specific cells for studying disease using the patient's own tissue, which has distinct advantages over using generic cells or animal models," says Dr. Edward Fon, neurologist and co-Director of the Quebec iPSC platform. "Disease models using human samples are increasingly shown to be far more efficacious in trials, as they much more accurately mimic the disease condition. In the iPSC platform, not only can specific mutations be introduced but, cells are from patients' whose specific clinical history and genetic profile are known, a first step on the road toward neurological personalized medicine. The Neuro has access to a large and well-characterized patient population, who can help create a rich clinically-and genetically-derived registry and biobank. The initial targets in the platform will be ALS and Parkinson's disease (PD), using dopamine neurons for PD and both motor neurons and astrocytes for ALS."

The Quebec iPSC core facility is a provincial core headed by Drs. Fon and Puymirat. Reprogrammed cells at Laval University will be created from different sources such as skin biopsies, blood or urine. The Neuro's component of the platform will consist of two core facilities. The iPSC neuronal differentiation core - which differentiate iPSCs into functional neurons, headed by Dr. Eric Shoubridge, and the iPSC genome-editing core providing unprecedented ability to study the influence of disease mutations, headed by Dr. Peter McPherson.
-end-
The Montreal Neurological Institute and Hospital

The Montreal Neurological Institute and Hospital -- The Neuro, is a unique academic medical centre dedicated to neuroscience. Founded in 1934 by the renowned Dr. Wilder Penfield, The Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. The Neuro is a research and teaching institute of McGill University and forms the basis for the Neuroscience Mission of the McGill University Health Centre. Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders. For more information, visit http://www.theneuro.com

McGill University

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...