Nav: Home

Methane monitoring method reveals high levels in Pennsylvania stream

March 31, 2015

A new stream-based monitoring system recently discovered high levels of methane in a Pennsylvania stream near the site of a reported Marcellus shale gas well leak, according to researchers at Penn State and the U.S. Geological Survey. The system could be a valuable screening tool to assess the environmental impact of extracting natural gas using fracking.

Multiple samples from the stream, Sugar Run in Lycoming County, showed a groundwater inflow of thermogenic methane, consistent with what would be found in shale gas, the researchers report in a recent issue of Environmental Science and Technology. Victor Heilweil, research hydrologist, Utah Water Science Center, USGS, was lead author on the paper.

"I found it startling that our USGS and Penn State team of four people did a reconnaissance of 15 streams and discovered one instance of natural gas degassing into a stream that may very well be explained by a nearby leaking shale gas well," said Susan Brantley, distinguished professor of geosciences and director of the Earth and Environmental Systems Institute at Penn State.

After testing Sugar Run and finding high methane levels, researchers learned that several nearby domestic water supplies were reportedly contaminated by a Marcellus gas well that had a defective casing or cement, according to the researchers.

Additional analyses of the degassing methane revealed characteristics also observed at the leaking gas well, but scientists were not able to prove the methane in Sugar Run is caused by the leak because they do not have baseline samples of the stream. Still, the researchers pointed to the findings to show stream monitoring is an effective, efficient method for monitoring shale-gas impacts.

"We hope this new technique developed by the USGS can now be used as a way of monitoring stray gas not only when it gets into drinking water, but when it gets into streams, which are much easier to access than homeowner wells," said Brantley, a co-author of the study. "In addition, streams collect water from nearby areas and may be very cost effective waters to target for monitoring because they integrate over larger land areas."

Most monitoring around gas wells has traditionally been limited to domestic water wells. Testing that way alone, especially in rural areas where the wells are spread out, has made assessing the true impact of wells difficult, researchers said in the report.

"Watersheds funnel water and chemicals to streams and by sampling at the end of the funnel we are able to find leaks that would otherwise be like looking for a needle in a haystack," said Kip Solomon, professor of geology and director of the Noble Gas Laboratory at the University of Utah, another co-author of the report.
-end-
Also working on this project were Paul L. Grieve, former graduate student, Penn State, now a geologist at AECOM ; Scott A. Hynek, postdoctoral fellow, Earth and Environmental Systems Institute and Department of Geosciences, Penn State; and Dennis W. Risser , hydrologist, Pennsylvania Water Science Center, U.S.G.S.

The U.S.G.S and the National Science Foundation supported this work.

Penn State

Related Methane Articles:

New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.
Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.
Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.
Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.
Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.
Methane-consuming bacteria could be the future of fuel
Northwestern University researchers have found that the enzyme responsible for the methane-methanol conversion in methanotrophic bacteria catalyzes the reaction at a site that contains just one copper ion.
New measurement method for radioactive methane
The method developed by Juho Karhu in his PhD thesis work is a first step towards creating a precise measuring device.
New key players in the methane cycle
Methane is not only a powerful greenhouse gas, but also a source of energy.
Diffusing the methane bomb: We can still make a difference
The Arctic is warming twice as fast as the rest of the planet, causing the carbon containing permafrost that has been frozen for tens or hundreds of thousands of years to thaw and release methane into the atmosphere, thereby contributing to global warming.
More Methane News and Methane Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.