Nav: Home

South-east England ahead on genetic tests for inherited eye conditions

March 31, 2015

New research from The University of Manchester published in the Journal of Community Genetics reveals a stark variation in genetic testing services for inherited eye disease in England.

The study, which was part-funded by Fight for Sight, shows that service provision in the North-east is much lower than expected based on population size and demographics, while in London and the South-east, it's much higher.

Genetic tests have been available on the NHS for over a decade for a limited number of inherited retinal dystrophies such as retinitis pigmentosa. However, new technology, known as 'next-generation sequencing' (NGS), has made it possible to map many genes simultaneously, saving time and money.

NGS means that many more patients with inherited retinal dystrophies could receive accurate genetic diagnoses and appropriate genetic counselling on how the condition might affect their families. But in order to plan for an expansion in NHS service provision, it is necessary to know how well existing services are working.

In the current study, the research team looked back at genetic testing in 2003-2011 for common mutations in six genes linked to dominantly inherited and X-linked retinitis pigmentosa. They quantified the variation in testing rate between the nine NHS regions in England, based on population size and demographics.

Results showed that by 2011, 4.5 per 100,000 males and 2.6 per 100,000 females in England had been tested. However, there was a wide variation in testing rates between the regions.

In north-east England there were approximately half as many tests as expected, whereas in the south-east, the rate was over a third more than expected. Only in the west Midlands and east England were test rates in line with the overall rate for England.

"It is likely that a number of factors have contributed to this variation in access to genetic services," said Professor Graeme Black from the Centre for Genomic Medicine at The University of Manchester, who led the research. "For instance, the at-risk population is not uniform across England; the way in which diagnostic tests are made available to clinicians varies between regions; and it's unclear whether there is variation in the way that clinicians and genetic counsellors explain the tests to patients.

"However, it is clear that we are unlikely to achieve equal access across the regions by chance. We need a consistent approach in providing information to patients about the availability and perceived value of testing and we need a strong evidence base to support the value of genetic testing on grounds of clinical and economic utility.

"In this way we can begin to develop a single, national strategy that will make it possible to fulfil the huge potential of next-generation sequencing to improve patient care and drive research forward."

The study is part of the wider £0.5 million REGARD programme, funded by Fight for Sight, which aims to build an optimal, patient-led model of care services for people with inherited retinal diseases. In one strand of research, the team has developed a new NGS test for inherited eye disease that targets 180 different genes.

The REGARD programme is particularly important as commissioning for genetic eye services changes within the NHS. The recently established NHS specialised commissioning task force requires firm evidence of patient outcomes and the cost-benefit case for improving services. Data from REGARD will help build the evidence needed, for example, to introduce the 180-gene test throughout the NHS.

"Whilst the variation in services across England is shocking, I'm glad to see that we now have some hard evidence with which to build the case for a clear NHS strategy on inherited retinal dystrophy," said Dr Dolores M Conroy, Director of Research at Fight for Sight.

"These results go hand in hand with developing the next-generation sequencing technology that enables specific diagnoses for patients and finds new targets for developing treatment. We still have a long way to go but this is a very necessary step along the way."
-end-


University of Manchester

Related Genetic Testing Articles:

Genetic testing can pick out men at increased risk of testicular cancer
Testing for large numbers of genetic changes can identify men with over a 10-fold increased risk of testicular cancer, a new study shows.
The Angelina Jolie effect on breast cancer genetic testing
Pop culture icons can influence our fashion choices, dietary habits and brand preferences, but can celebrities also influence our medical decisions?
Studies probe value and impact of direct-to-consumer genetic testing
The latest results from the PGen study were published on Dec.
Prevalence of Ph-like ALL in adults underscores need for genetic testing, clinical trials
International research led by St. Jude Children's Research Hospital shows the high-risk subtype Ph-like ALL accounts for almost 25 percent of ALL cases in adults and may be treatable with available targeted therapies
ASHG Webinar Series: Genetic Testing in Children and Adolescents
This series of three free webinars, intended for primary care providers and specialists who treat children and adolescents, will help fill clinical gaps by teaching best practices in genetic testing.
More Genetic Testing News and Genetic Testing Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...