Nav: Home

$2.1 million grant targets antibiotic resistance

March 31, 2015

AUSTIN, Texas -- The National Institutes of Health (NIH) has awarded Dr. Walter Fast, associate professor of medicinal chemistry at The University of Texas at Austin's College of Pharmacy, a four-year $2.1 million grant to develop small-molecules that counter antibiotic resistance in Gram-negative bacteria. If successful, the research could lead to new drugs for treating bacterial infections that are resistant to most antibiotics.

Antibiotic resistance occurs when bacteria alters itself to reduce the effectiveness of drugs designed to eliminate bacteria. The most common cause of resistance is overuse of antibiotics. As bacteria are increasingly exposed to antibiotic treatments, they evolve in ways that make them less vulnerable to the treatments. This resistance gives rise to superbugs that do not respond to current antibiotic therapies.

Fast is studying a class of enzymes called metallo-beta-lactamases that confer resistance to almost all clinically used beta-lactam antibiotics, including penicillins, cephalosporins, and even carbapenems that are often used as drugs of last resort for treating resistant infections. One of the more prominent examples is a superbug called NDM, named after its primary resistance determinant New Delhi metallo-beta-lactamase, which has quickly spread worldwide since its 2008 discovery in India.

"Inhibitors of these enzymes could resurrect our ability to use a whole class of antibiotics on resistant infections," Fast said, "but there are currently no approved drugs that counter metallo-beta-lactamase activity."

Fast had studied metallo-beta-lactamases as a postdoctoral fellow, but when he joined the UT Austin faculty in 2002, he moved his focus to structurally related proteins that interfere with interbacterial communication pathways.

"After hearing about NDM on the news," said Fast, "I felt like we could build on what we've learned from related proteins and really make a meaningful contribution."

He recruited an interdisciplinary research team with labs headed by Dr. Seth Cohen at the University of California, San Diego; Dr. Robert Bonomo at Case Western Reserve University; and Drs. Michael Crowder, David Tierney and Rick Page at the University of Miami, Ohio. The teams use fragment-based library design, high-throughput screening, enzymology, biophysical characterization, X-ray crystallography and microbiology to develop drug-like inhibitors that target the most clinically prevalent metallo-beta-lactamases. The Center for Infectious Disease and the small-molecule screening core of the Texas Screening Alliance at The University of Texas at Austin will also provide resources for the project. Ultimately, the team's goal is to develop a suite of structurally diverse inhibitors suitable for pre-clinical trials.
-end-


University of Texas at Austin

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.