Nav: Home

Handheld surgical 'pen' prints human stem cells

March 31, 2016

In a landmark proof-of-concept experiment, Australian researchers have used a handheld 3D printing pen to 'draw' human stem cells in freeform patterns with extremely high survival rates.

The device, developed out of collaboration between ARC Centre of Excellence for Electromaterials Science (ACES) researchers and orthopaedic surgeons at St Vincent's Hospital, Melbourne, is designed to allow surgeons to sculpt customised cartilage implants during surgery.

Using a hydrogel bio-ink to carry and support living human stem cells, and a low powered light source to solidify the ink, the pen delivers a cell survival rate in excess of 97%.

3D bioprinters have the potential to revolutionise tissue engineering -they can be used to print cells, layer-by-layer, to build up artificial tissues for implantation.

But in some applications, such as cartilage repair, the exact geometry of an implant cannot be precisely known prior to surgery. This makes it extremely difficult to pre-prepare an artificial cartilage implant.

The Biopen special is held in the surgeon's hands, allowing the surgeon unprecedented control in treating defects by filling them with bespoke scaffolds.

Professor Peter Choong, Director of Orthopaedics at St Vincent's Hospital Melbourne, developed the concept with ACES Director Professor Gordon Wallace.

"The development of this type of technology is only possible with interactions between scientists and clinicians - clinicians to identify the problem and scientists to develop a solution," Professor Choong said.

The team designed the BioPen with the practical constraints of surgery in mind and fabricated it using 3D printed medical grade plastic and titanium. The device is small, lightweight, ergonomic and sterilisable. A low powered light source is fixed to the device and solidifies the inks during dispensing.

"The biopen project highlights both the challenges and exciting opportunities in multidisciplinary research. When we get it right we can make extraordinary progress at a rapid rate," Professor Wallace said.

The work was is published journal Biofabrication.

Design expertise and fabrication of the BioPen was supported by the Materials Node of the Australian National Fabrication Facility.
-end-


ARC Centre of Excellence for Electromaterials Science

Related Human Stem Cells Articles:

IU researchers grow hairy skin from human stem cells
Building on years of groundbreaking discoveries in stem cell research, scientists from Indiana University School of Medicine and Harvard Medical School have determined how to grow hairy skin using human stem cells--developing one of the most complex skin models in the world.
Stem cells in human embryos commit to specialization surprisingly early
The point when human embryonic stem cells irreversibly commit to becoming specialised has been identified by researchers at the Francis Crick Institute.
First treatment for pain using human stem cells a success
Researchers at the University of Sydney have used human stem cells to make pain-killing neurons that provide lasting relief in mice, without side effects, in a single treatment.
Heart attack modeled with human stem cells
A model of ischemic heart disease was developed using human induced pluripotent stem cells (hiPSC).
Human blood cells can be directly reprogrammed into neural stem cells
Scientists from the German Cancer Research Center (DKFZ) and the stem cell institute HI-STEM* in Heidelberg have succeeded for the first time in directly reprogramming human blood cells into a previously unknown type of neural stem cell.
Better way to transplant human stem cells
A tissue-like structure created from human stem cells and implanted into a damaged region of the mouse brain improves cell survival and differentiation relative to conventional, cell-based methods.
Twenty years on, measuring the impact of human stem cells
A paper published today (Nov. 1, 2018) in the journal Cell Stem Cell describing the global scope and economic impact of stem cell science, including the clinical, industrial and research use of the cells.
Researchers identify human skeletal stem cells
Human skeletal stem cells that become bone, cartilage, or stroma cells have been isolated from fetal and adult bones.
Researchers identify mesenchymal stem cells (MSCs) in human arteries
Mount Sinai researchers identified, in situ and in vivo, adventitial CD90+ (a protein used as a marker for a variety of stem cells) and mesenchymal stem cells (MSCs) in human arteries for the first time.
Robots grow mini-organs from human stem cells
A robotic system has been developed to automate the production of human mini-organs derived from stem cells.
More Human Stem Cells News and Human Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Graham
If former Minneapolis police officer Derek Chauvin's case for the death of George Floyd goes to trial, there will be this one, controversial legal principle looming over the proceedings: The reasonable officer. In this episode, we explore the origin of the reasonable officer standard, with the case that sent two Charlotte lawyers on a quest for true objectivity, and changed the face of policing in the US. This episode was produced by Matt Kielty with help from Kelly Prime and Annie McEwen. Support Radiolab today at Radiolab.org/donate.