Nav: Home

New insights into the cause of neurological symptoms in mitochondrial diseases

March 31, 2016

Mitochondrial diseases - which affect 1 in 5,000 people - encompass a spectrum of disorders with an array of symptoms. Many patients with a mitochondrial disease experience neurological symptoms, including intellectual disability, childhood epilepsy and autism spectrum disorder, but why dysfunctional mitochondria - the powerhouses of cells -lead to these sorts of symptoms has been unclear.

In a paper published on March 31 in Cell Reports, investigators from Brigham and Women's Hospital (BWH) shed light on what may be the root cause of these neurological symptoms by tracing the development of interneurons. Interneurons, also known as connector neurons, must migrate long distances during the brain's development, taking a circuitous path to travel from their neural stem cell origins in the ventral forebrain to their location in the dorsal neocortex. The new study indicates that mitochondria, which provide energy for cells, may play a vital role in this migration. Using preclinical models, the team determined that interneurons have higher energetic requirements than other neurons and that properly working mitochondria move about inside interneurons rapidly during migration. When Ant1, a gene known to play a role in mitochondrial disease, was disrupted, mitochondria did not move about in the same patterns and interneurons migrated more slowly and shorter distances.

The new work suggests that correcting epilepsy or reversing other neurological symptoms in patients with mitochondrial diseases will not be as simple as replacing dysfunctional mitochondria at any time. Instead, these symptoms may be the result of brain developmental defects that took place during embryonic development. Further studies will be needed to validate these results in tissue samples from humans.

"We need to rethink how we strategize caring for patients. Historically, patients have been recalcitrant to therapy, and this new work may explain why," said Jeffrey Golden, MD, chair of BWH's Department of Pathology and a co-corresponding author of the study. "This work also provides an insight into rethinking therapeutic strategies."
-end-


Brigham and Women's Hospital

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.