Nav: Home

Agriculture expansion could reduce rainfall in Brazil's Cerrado

March 31, 2016

PROVIDENCE, R.I. [Brown University] -- Agricultural expansion is quickly chewing up native vegetation in the vast wooded savannas of Brazil's Cerrado biome, and a new study shows that those changes in land use are altering the region's water cycle.

"We've shown that cropland recycles less water annually back into the atmosphere than native Cerrado vegetation," said Stephanie Spera, a graduate student at Brown University in the department of Earth, Environmental and Planetary Science and a researcher at the Institute at Brown for Environment and Society (IBES). "As agriculture continues to expand, that could affect the rainfall regime that supports both natural vegetation and agricultural production."

The study, which Spera led along with researchers from the University of Vermont and the Woods Hole Research Center, is published in the journal Global Change Biology.

While the Brazilian Amazon has been the focus of intense conservation efforts, the neighboring Cerrado has received much less attention, Spera said. As a result, deforestation to make room for cropland has increased in the Cerrado, even as it has slowed significantly in the Amazon.

Spera and her colleagues used a decade's worth of satellite data to document those land use changes in a Cerrado region called Matopiba, where a bulk of recent agricultural expansion has taken place. The data showed that agricultural land more than doubled in area, from 1.3 million hectares in 2003 to 2.5 million hectares in 2013, within the 45 million-hectare study area. Nearly three quarters of that expansion happened on land that had been host to intact native Cerrado vegetation.

The researchers also used the satellite data to estimate the region's rate of evapotranspiration -- the amount of water escaping soil and plant leaves that is recycled back into the atmosphere. The data showed that during the growing season, cropland recycles as much or slightly more water than native vegetation. But during the dry season, when the fields are fallow, evapotranspiration from agricultural land was an average of 60 percent lower than from native vegetation.

As cropland continues to expand at the expense of Cerrado vegetation, the decrease in dry season water recycling could eventually impact the region's critical rainy season, which is responsible for the lion's share of Cerrado rains. "Modeling studies have shown that alteration of the regional water cycle during the dry season could affect both the timing and stability of the rainy season," Spera said.

That has implications for both the natural vegetation and the continued viability of the region for agricultural production.

"Timing of rains is a big deal," said Jack Mustard, a professor of earth, environmental and planetary sciences at Brown and co-author on the study. "This is nearly all rain-fed agriculture in this region. If you start delaying the onset of the rainfall, that has implications for what you can grow."

But the impacts aren't necessarily confined to the Cerrado. Prevailing winds carry Cerrado air masses westward toward the Amazon, and the moisture within them contributes to rainfall there as well.

"Half of the rainfall in the Amazon is recycled water," Spera said. "So a decrease in moisture in those air masses could cause a decrease in rainfall."

The study also, however, identified a potential mitigating factor to the overall decrease in water recycling: double cropping.

Double cropping is the planting of two crops in the same field in a single growing season. The study showed that, in terms of annual evapotranspiration, double-cropped land behaves more similarly to native vegetation. That's because double cropping effectively increases the length of the active growing season -- the period during which cropland evapotranspiration rivals that of native vegetation.

Double cropping increased from just 2 percent of cropland in 2003 to more than 26 percent in 2013. Without that increase in double cropping, the reduction of water recycling in croplands would have been as much as 25 percent worse, the study showed.

The researchers suggest that policies that encourage double cropping could help to blunt the effect of agricultural expansion on the Cerrado water cycle.
-end-
Other authors on the study were Gillian Galford (University of Vermont), Michael Coe (Woods Hole) and Marcia N. Macedo (Woods Hole). The work was funded by the NASA Land-Cover/Land-Use Change Program (NNX11AH91G and NNX11AE56G), a NASA Terrestrial Ecology grant (NNX12AK11G), and the Gordon and Betty Moore Foundation and a IBES fellowship.

Brown University

Related Rainfall Articles:

NASA looks at rainfall from Tropical Storm Dora
Now a tropical storm, Hurricane Dora has been skirting southwestern Mexico's coast since it formed and has transported tropical moisture onshore that has produced some heavy rain showers.
NASA adds up Tropical Storm Cindy's rainfall
Tropical storm Cindy was downgraded to a tropical depression after moving onshore near the Texas and Louisiana Border on Thursday June 22, 2017 and bringing a lot of rain with it.
Bangladesh's heavy rainfall examined with NASA's IMERG
At least 156 people in Bangladesh were killed during the past week by landslides and floods caused by heavy rainfall.
NASA looks at extreme Florida rainfall by satellite
Extremely heavy rain has recently fallen over Florida and the Global Precipitation Measurement or GPM mission core satellite looked at that some of that rainfall on June 7.
Summer rainfall in vulnerable African region can be predicted
Summer rainfall in one of the world's most drought-prone regions can now be predicted months or years in advance, climate scientists at the Met Office and the University of Exeter say.
NASA adds up record Australia rainfall
Over the week of May 15, extreme rainfall drenched northeastern Australia and NASA data provided a look at the record totals.
Varied increases in extreme rainfall with global warming
A new study by researchers from MIT and the Swiss Federal Institute of Technology in Zurich shows that the most extreme rain events in most regions of the world will increase in intensity by 3 to 15 percent, depending on region, for every degree Celsius that the planet warms.
NASA examines Peru's deadly rainfall
The Global Precipitation Measurement mission or GPM constellation of satellites provide data on precipitation rates and totals.
NASA examines Ex-Tropical Cyclone Dineo's rainfall
NASA examined the heavy rainfall generated by Tropical Cyclone Dineo as it made landfall in Mozambique and NASA's Terra satellite spotted the storm's remnants over four countries.
NASA observes extreme rainfall over Southern California
NASA calculated California's rainfall over seven days using a constellation of satellites and created a map to provide the visual extent of the large rainfall totals.

Related Rainfall Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".