Nav: Home

3-D 'mini-retinas' grown from mouse and human stem cells

March 31, 2016

Stem cell science has progressed so that researchers can now share recipes for making human retinas--the part of the eye that is sensitive to light. The first protocols enabled the generation of retinal cells in laboratory plates and more recently as complex tissue in the form of tiny eye-like cups. Researchers in Germany now have another efficient way to make 3-D retina organoids, which mimic the organ's tissue organization, from mouse or human stem cells. Their version of "mini-retinas," published online on March 31 by Stem Cell Reports, offers new perspectives on retina growth, injury, and repair.

"The goal isn't just to make the closest thing next to a real retina, but also to possibly harness the flexibility of the system to create more diverse ways of studying retina tissue," says senior author Mike Karl of the German Center for Neurodegenerative Diseases (DZNE). "We need to respect that each protocol is a new beast with different tastes, wrappings, and purposes."

Stem cell technologies have the potential to develop therapies for the treatment of diseases such as age-related blindness, and as clinical researchers work to apply the cells into new therapies, stem cell biologists such as Karl have been working to understand the regeneration of neurons from lower vertebrates to humans, which can aid regenerative medicine in more indirect ways.

For example, the 3-D retinal organoids developed in Karl's lab (an effort led by first author Manuela Völkner) efficiently replicate the formation of the retina. This specifically includes the light-detecting cone cells, which now can be produced in high quantities in their mini-retinas. Cone photoreceptors, which are responsible for high acuity and color vision, are the most precious retinal cell type with regard to potential future cell replacement therapies in patients affected by retinal degeneration.

Karl and colleagues' comparative studies on pluripotent stem cell-derived human and mouse retina organoids and mouse retina in vivo support the power of the new organoid protocol. "Tissue heterogeneity is a major challenge in organoid systems, and here our work provides new insight, which will help to develop specific organoid-based models, specifically to reliably study retinal disease mechanism," says Karl, who is also a part of the Center for Regenerative Therapies (CRTD) at Technische Universit?t Dresden.

"Even with our new additions to existing organoid systems, we have not yet reached that tipping point of robustness that we need for people without the expertise to grow these models," says Karl, "By working out the details, we also hope to help those who are not developmentally or stem cell-minded to just go and study what they want."

The Karl Lab's change to the mini-retina protocol involves cutting a retina organoid grown from stem cells into three pieces at an early stage of eye development. Each of these pieces, which look like little half moons, eventually grows into the full suite of cells found in the retina, thereby increasing the yield of retinal organoids up to 4-fold compared to previous protocols. A trisection also spurs the surviving organoids to grow to reach sizes similar to uncut organoids. These mini-retinas swim around in the dish and because they're not attached to a surface, better reflect the structure of retinal tissue during development.

Karl's next objective is to make his 3-D "mini-retinas" even more complex, perhaps by bringing in blood vessels, as well as to use the organoids to study regeneration and the function of different neural cell types--specifically, from the human retina.
-end-
This work was supported by the Funding Programs for DZNE Helmholtz, TU Dresden CRTD, DFG, MedDrive TU Dresden UKD-Medical Faculty, research award Novartis Pharma GmbH, Volkswagen Foundation Freigeist fellowship, and the European Union's 6th Framework Program ESTOOLS.

Stem Cell Reports, Völkner et al.: "Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis." http://dx.doi.org/10.1016/j.stemcr.2016.03.001

Stem Cell Reports, published by Cell Press for the International Society for Stem Cell Research, is a monthly open-access forum communicating basic discoveries in stem cell research, in addition to translational and clinical studies. The journal focuses on shorter, single-point manuscripts that report original research with conceptual or practical advances that are of broad interest to stem cell biologists and clinicians. Visit http://www.cell.com/stem-cell-reports. To receive Cell Press media alerts, please contact press@cell.com.

Cell Press

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.