Nav: Home

Argonne continues to pave way for improved battery performance testing

March 31, 2016

ARGONNE, IL (March 29, 2016) ?Scientists at the U.S. Department of Energy's Argonne National Laboratory have demonstrated that the design and placement of a tiny measurement device called a reference electrode enhances the quantity and quality of information that can be extracted from lithium-ion battery cells during cycling.

Reference electrodes (REs) are used to measure the voltages of individual electrodes that make up the battery cell. "Such information is critical, especially when developing batteries for larger-scale applications, such as electric vehicles, that have far greater energy density and longevity requirements than typical batteries in cell phones and laptop computers," said Argonne battery researcher Daniel Abraham, co-author of a newly published study in the Journal of The Electrochemical Society. "This kind of detailed information provides insight into a battery cell's health; it's the type of information that researchers need to evaluate battery materials at all stages of their development."

Argonne battery researchers have been at the forefront of using REs to evaluate the performance of lithium-ion cells, Abraham said. Their studies have provided crucial insights into cell aging phenomena, including the effects of test temperatures and cycling voltages. Mitigating the root causes of aging can increase cell longevity and improve the commercial viability for applications that require long-term battery durability.

Until recently, Argonne battery researchers would use only one RE, based on a lithium-tin (Li-Sn) alloy, to collect information. However, Abraham's team found that by sandwiching a Li-Sn RE between the positive and negative electrodes, while simultaneously positioning a pure Li metal RE next to the stack, they could obtain insights into electrode state-of-charge shifts, active material use, active material loss and impedance changes.

In testing the new RE configuration, researchers used a cell containing a lithiated oxide cathode (NCM-523), an Argonne-developed silicon-graphite anode (Si-Gr) and various electrolytes, including ones with fluoroethylene carbonate (FEC) or vinylene carbonate (VC) additives. Both NCM-523 and Si-Gr are materials of interest for high-energy-density lithium-ion batteries being developed to extend the driving range of vehicles.

"Silicon-containing electrodes could double the energy stored in lithium-ion cells," said Abraham. But because Si-containing cells degrade more quickly, the Argonne team wanted to know the impact of the FEC and VC addition to the cell electrolyte. "Our new RE configuration confirms the beneficial impact of these additives, not only in reducing capacity loss but also in mitigating the impedance rise displayed by cells without these additives," he added.
-end-
This research was funded by the Department of Energy's Vehicle Technologies Office.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

DOE/Argonne National Laboratory

Related Aging Articles:

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.
Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.
Intelligence can link to health and aging
For over 100 years, scientists have sought to understand what links a person's general intelligence, health and aging.
Putting the brakes on aging
Salk Institute researchers have developed a new gene therapy to help decelerate the aging process.
New insights into the aging brain
A group of scientists at the Gladstone Institutes investigated why the choroid plexus contains so much more klotho than other brain regions.
More Aging News and Aging Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...