Nav: Home

Proteins associated with schizophrenia hang around longer than previously thought

March 31, 2016

The discovery that a particular protein doesn't just give cells a job but also sticks around to tell them how to do these new assignments could provide insight into schizophrenia, as well as a neurodevelopmental disorder, according to a new study by a Drexel University research team.

The team discovered that the protein, called TCF4, remains present in cells after neurogenesis -- where they turn jobless cells into neurons. Neurons are cells in the nervous system that send specific signals to each other, and scientists believed that TCF4 degraded and disappeared at that stage. However, Drexel researchers found that TCF4 sticks around and restricts the number of synapses neurons make.

"It seems these proteins are performing double duty," said Daniel Marenda, PhD, associate professor and director of the Biology graduate program in Drexel's College of Arts and Sciences. "Not only do the proteins take a cell that doesn't have a job and give it one, but once the cell has a job, it tells that cell how to do it."

The study, "Type I bHLH Proteins Daughterless and TCF4 Restrict Neurite Branching and Synapse Formation by Repressing Neurexin in Postmiotic Neurons" was published in Cell Reports. Its first author, Mitchell D'Rozario, PhD, was Marenda's graduate student, and is now a post-doctoral researcher at Washington University School of Medicine.

While the protein at the center of the study is referred to as TCF4 in humans, rats and mice, it is called Daughterless in Drosophila, or fruit flies, where the protein's persistence was discovered.

"We found, rather unexpectedly, that the fly protein Daughterless was present in neurons, cells that already had a job. This was odd to us," Marenda said. "So we decided to investigate what Daughterless might be doing in the cells."

When they found that Daughterless was regulating the number of synapses in neurons, the team analyzed TCF4 in mice and found that it was doing the exact same thing. The protein had not disappeared, but was still present and very active.

These findings are particularly important because of the association TCF4 gene variants have with schizophrenia and Pitt-Hopkins Syndrome, a neurodevelopmental disorder.

"Mutations in TCF4 are associated with both," Marenda explained. "So we think that TCF4 is most likely involved in helping to form the proper number of synapses a cell makes, so that the information flow in the nervous system doesn't get confused and dysfunctional. When you lose these proteins, you suddenly get too many synapses and it disrupts the nervous system function."

Marenda said that there is evidence that cells making too many synapses are associated with autism. Further study of the presence of TCF4 (and Daughterless) in neurons could uncover more about the relationship between synapse number and adult nervous system function.

"Depending on the severity of the mutation's effect on TCF4, you may get differing outcomes," Marenda said. "Too severe a mutation may give you a strong effect like Pitt-Hopkins Syndrome, while other changes in the gene may increase your risk of schizophrenia. But the underlying mechanism may be similar."
-end-


Drexel University

Related Schizophrenia Articles:

Dietary supplement may help with schizophrenia
A dietary supplement, sarcosine, may help with schizophrenia as part of a holistic approach complementing antipsychotic medication, according to a UCL researcher.
Schizophrenia: Adolescence is the game-changer
Schizophrenia may be related to the deletion syndrome. However, not everyone who has the syndrome necessarily develops psychotic symptoms.
Study suggests overdiagnosis of schizophrenia
In a small study of patients referred to the Johns Hopkins Early Psychosis Intervention Clinic (EPIC), Johns Hopkins Medicine researchers report that about half the people referred to the clinic with a schizophrenia diagnosis didn't actually have schizophrenia.
The ways of wisdom in schizophrenia
Researchers at UC San Diego School of Medicine report that persons with schizophrenia scored lower on a wisdom assessment than non-psychiatric comparison participants, but that there was considerable variability in levels of wisdom, and those with higher scores displayed fewer psychotic symptoms.
Recognizing the uniqueness of different individuals with schizophrenia
Individuals diagnosed with schizophrenia differ greatly from one another. Researchers from Radboud university medical center, along with colleagues from England and Norway, have demonstrated that very few identical brain differences are shared amongst different patients.
Resynchronizing neurons to erase schizophrenia
Today, a decisive step in understanding schizophrenia has been taken.
Genetics researchers close in on schizophrenia
Researchers at the MRC Centre for Neuropsychiatric Genetics and Genomics at Cardiff University have discovered 50 new gene regions that increase the risk of developing schizophrenia.
Looking for the origins of schizophrenia
Schizophrenia may be related to neurodevelopment changes, including brain's inability to create the appropriate vascular system, according to new study resulted from a partnership between the D'Or Institute for Research and Education, the University of Chile and the Federal University of Rio de Janeiro (UFRJ).
Researchers uncover novel mechanism behind schizophrenia
An international team of researchers led by a Case Western Reserve University School of Medicine scientist has uncovered a novel mechanism in which a protein--neuregulin 3--controls how key neurotransmitters are released in the brain during schizophrenia.
A new genetic marker for schizophrenia
Japanese scientists find a rare genetic variant that shows strong association with schizophrenia.
More Schizophrenia News and Schizophrenia Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.