Nav: Home

Scientists discover a missing link between tau and memory loss

March 31, 2016

Scientists have long known that the protein tau is involved in dementia, but how it hinders cognitive function has remained uncertain. In a study published in the journal Neuron, researchers at the Gladstone Institutes reveal how tau disrupts the ability of brain cells to strengthen connections with other brain cells, preventing new memories from forming.

"Understanding why and how tau is toxic to neurons is the first step in repairing or preventing the damage it causes in Alzheimer's disease," said senior author Li Gan, PhD, a senior investigator at Gladstone. "We learned that tau disrupts memory in models of Alzheimer's disease by depleting another protein, KIBRA, which is critical for memory formation. With this knowledge, we can explore ways to increase KIBRA with drugs that block the harmful effects of tau."

Memories are formed when chemical signals strengthen the connection between neurons. To maintain the memories, neurons physically change, recruiting more chemical receptors to the surface where the connections are made (the synapse) to increase the strength of incoming signals. If the connections among neurons weaken or are lost, so is the memory.

In the current study, the scientists discovered that, in a mouse model of Alzheimer's disease, the accumulation of tau in neurons disrupts the cells' ability to strengthen their connections with other neurons, preventing them from stabilizing new memories. This is because a natural chemical modification of tau called acetylation that is exacerbated in Alzheimer's disease results in tau moving from its normal location in the neuron to the synapse. At the synapse, tau depletes another protein called KIBRA (KIdney/BRAin protein), a process that prevents neurons from adapting and strengthening their connections. Increasing KIBRA levels reversed the harmful effects of acetylated tau and restored the cells' ability to form memories.

Supporting the clinical relevance of this finding, the researchers also found that KIBRA is decreased in the brains of patients with Alzheimer's disease, which correlated with an increase in acetylated tau.

"Our findings suggest that KIBRA may be the missing link between tau and memory loss in Alzheimer's disease," said first author Tara Tracy, PhD, a postdoctoral scholar at Gladstone. "The next step is to determine precisely how acetylated tau causes KIBRA levels to drop, and to explore whether our findings may help develop better treatments for Alzheimer's disease."
-end-
Other Gladstone scientists on the study include Peter Sohn, S. Sakaura Minami, Chao Wang, Sang-Won Min, Yaqiao Li, Yungui Zhou, David Le, Iris Lo, and Ravikumar Ponnusamy. Researchers from the Buck Institute for Research on Aging and John Hopkins University School of Medicine also contributed to the research.

About the Gladstone Institutes

To ensure our work does the greatest good, the Gladstone Institutes focuses on conditions with profound medical, economic, and social impact--unsolved diseases of the brain, the heart, and the immune system. Affiliated with the University of California, San Francisco, Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease.

Gladstone Institutes

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...