Nav: Home

Scientists discover a missing link between tau and memory loss

March 31, 2016

Scientists have long known that the protein tau is involved in dementia, but how it hinders cognitive function has remained uncertain. In a study published in the journal Neuron, researchers at the Gladstone Institutes reveal how tau disrupts the ability of brain cells to strengthen connections with other brain cells, preventing new memories from forming.

"Understanding why and how tau is toxic to neurons is the first step in repairing or preventing the damage it causes in Alzheimer's disease," said senior author Li Gan, PhD, a senior investigator at Gladstone. "We learned that tau disrupts memory in models of Alzheimer's disease by depleting another protein, KIBRA, which is critical for memory formation. With this knowledge, we can explore ways to increase KIBRA with drugs that block the harmful effects of tau."

Memories are formed when chemical signals strengthen the connection between neurons. To maintain the memories, neurons physically change, recruiting more chemical receptors to the surface where the connections are made (the synapse) to increase the strength of incoming signals. If the connections among neurons weaken or are lost, so is the memory.

In the current study, the scientists discovered that, in a mouse model of Alzheimer's disease, the accumulation of tau in neurons disrupts the cells' ability to strengthen their connections with other neurons, preventing them from stabilizing new memories. This is because a natural chemical modification of tau called acetylation that is exacerbated in Alzheimer's disease results in tau moving from its normal location in the neuron to the synapse. At the synapse, tau depletes another protein called KIBRA (KIdney/BRAin protein), a process that prevents neurons from adapting and strengthening their connections. Increasing KIBRA levels reversed the harmful effects of acetylated tau and restored the cells' ability to form memories.

Supporting the clinical relevance of this finding, the researchers also found that KIBRA is decreased in the brains of patients with Alzheimer's disease, which correlated with an increase in acetylated tau.

"Our findings suggest that KIBRA may be the missing link between tau and memory loss in Alzheimer's disease," said first author Tara Tracy, PhD, a postdoctoral scholar at Gladstone. "The next step is to determine precisely how acetylated tau causes KIBRA levels to drop, and to explore whether our findings may help develop better treatments for Alzheimer's disease."
-end-
Other Gladstone scientists on the study include Peter Sohn, S. Sakaura Minami, Chao Wang, Sang-Won Min, Yaqiao Li, Yungui Zhou, David Le, Iris Lo, and Ravikumar Ponnusamy. Researchers from the Buck Institute for Research on Aging and John Hopkins University School of Medicine also contributed to the research.

About the Gladstone Institutes

To ensure our work does the greatest good, the Gladstone Institutes focuses on conditions with profound medical, economic, and social impact--unsolved diseases of the brain, the heart, and the immune system. Affiliated with the University of California, San Francisco, Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease.

Gladstone Institutes

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.