Nav: Home

EU project aims to cure type 1 diabetes

March 31, 2016

FRANKFURT. The number of children in Europe and the USA with type 1 diabetes is growing by four percent each year. A group of European researchers has now joined forces under the leadership of the Goethe University, with the goal of sparing affected people from lifelong insulin therapy. They plan to develop three-dimensional cellular structures of insulin-producing cells (organoids) in the laboratory and to work with pharmaceutical industry partners to develop a process for their mass production. The European Union is providing over five million Euro over the next four years to support the project. The first clinical studies on transplantation of organoids are planned after that.

Patients with type 1 diabetes are unable to produce insulin due to a genetic defect or an autoimmune disorder. They could be cured by transplanting a functional pancreas, but there are not nearly enough donor organs available. This is why researchers had the idea of growing intact insulin-producing cells from donor organs in the laboratory to form organoids, which they would then transplant into the pancreas of diabetes patients. "The method has already been shown to work in mice", explains Dr Francesco Pampaloni, who coordinated the first project together with Prof. Ernst Stelzer at the Buchmann Institute for Molecular Life Sciences at the Goethe University.

Researchers have only recently discovered how to produce organoids. Adult stem cells, which develop into cells for wound healing or tissue regeneration in the body, are the starting point. These cells can be grown in the laboratory through cell division and then allowed to differentiate into the desired cell type. The key is now to embed them in a matrix so that they grow into three-dimensional structures. The organoids are typically spherical, hollow on the inside and have a diameter of approx. 20 micrometres - about half as thick as the diameter of a human hair - to hundreds of micrometres. "If the structure were compact, then there would be a risk of the inner cells dying off after transplantation because they wouldn't be supplied by the host organ's cellular tissue", Pampaloni explains.

The task of the Frankfurt group under Stelzer and Pampaloni is to control the growth and differentiation of the filigree organoids under a microscope. To do so, they use a light microscopy method developed by Stelzer with which the growth of biological objects can be followed cell for cell in three dimensions. The project is called LSFM4Life, because light sheet fluorescence microscopy (LSFM) plays a key role in the project.

The Frankfurt group is also responsible for developing quality assurance protocols, because of the cooperation with industrial partners in Germany, France, the Netherlands and Switzerland, the original goal of the project is the large-scale production of organoids in accordance with good manufacturing practices for pharmaceuticals. Two research groups in Cambridge specialise in isolating insulin-producing cells from donor organs and growing organoids, while a group of clinicians in Milan is developing methods for transplanting organoids.

As is the case for all organ transplants, care will have to be taken with organoids as well so that rejection responses by the recipient's immune system are avoided. However, over time the researchers plan to build cell banks from which immunologically compatible cell types can be selected for every recipient.
-end-
Video: https://youtu.be/L3xjCEBHYZg

Caption: Mouse Pancreas Organoid imaged with a Digitally Scanned Light Sheet-based Fluorescence Microscope (LSFM, mDSLM). Left: actin cytoskeleton (staining Phalloidin-Alexa488). Right: cell nuclei (staining Draq5). Illumination objective lens Carl Zeiss Epiplan Neofluar 2.5x, NA 0.05. Detection objective lens Carl Zeiss W N-Achroplan 10x, NA 0.3. Imaging and visualization by Francesco Pampaloni, Goethe University Frankfurt, BMLS. Pancreas organoids from Meritxell Huch and Christopher Hindley, Gurdon Institute, Cambridge, UK

Information: Dr. Francesco Pampaloni, Buchmann Institute for Molecular Life Sciences, Campus Riedberg, Tel,: (069) 798 42544, francesco.pampaloni@physikalischebiologie.de

Goethe University is a research-oriented university in the European financial centre Frankfurt founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens. It has rendered pioneer work on the fields of social and economic science, medical science and quantum physics, brain research, labour law and the humanities. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities. Together with the Technical University Darmstadt and the University Mainz Goethe University is partner in a strategic university alliance Rhein-Main.

Publisher: The President of Goethe University

Editor: Dr. Anke Sauter, Science Editor, International Communication, Tel: +49(0)69 798-12477, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de

Internet: http://www.uni-frankfurt.de

Goethe University Frankfurt

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Related Diabetes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...