Nav: Home

MSU tackles mystery of protein folding

March 31, 2016

EAST LANSING, Mich. - Proteins are the workhorses of life, mediating almost all biological events in every life form. Scientists know how proteins are structured, but folding - how they are built - still holds many mysteries.

New research conducted at Michigan State University and published in the current issue of Nature Chemical Biology, features a chemistry approach that's solving some of the riddles of the complex protein-building process of folding. When it goes right, strings of amino acids become well-ordered, three-dimensional proteins in a split second. When it goes awry, though, it's the first step of many serious diseases.

When errors happen in folding, proteins clump together, form plaques such as those found in Parkinson's disease and cystic fibrosis, and cause cells to degenerate. Understanding folding could lead to medicinal advances to treat these and other diseases at their earliest stage.

"Our novel tool set can potentially be applied to analyze how disease mutations impact the structural and functional integrity of pathologically important membrane proteins," said Heedeok Hong, MSU chemist and study co-author. "This knowledge will ultimately help in designing treatments that can stabilize defective membrane proteins for their optimal function."

The team focused on membrane proteins because roughly 30 percent of all proteins reside in this oily layer that encapsulates cells. Membrane proteins carry out many life functions, including the uptake of nutrients, secretion of wastes, maintaining ion balance and transmitting nerve signals.

"Despite their importance, we know little about how membrane proteins fold because studying membrane protein folding has been formidable, due to the lack of adequate methods," Hong said.

To tackle the membrane mysteries, the team developed a new method called "steric trapping." First, scientists attached two small molecular tags to a protein in its folded form. Next, they added bulky objects that bind the tags. The large attachments, by their sheer size alone, unravel the protein to its unfolded state.

This simple yet eloquent procedure can test the stability of membrane proteins, show what unfolded membrane proteins look like and reveal how individual amino acids that are building a protein work together to maintain its folded shape.

"Using this novel tag-binding system, or steric trapping, our team was able to observe and test membrane proteins without disturbing their native environment," Hong said. "Controlling folding and unfolding while keeping their native membrane environment has been one of the major methodological hurdles to solve the membrane protein folding problem. We have overcome one, and now we are ready for another."
-end-
Additional MSU researchers contributing to the study include Ruiqiong Guo, Kristen Gaffney, Miyeon Kim, Suttipun Sungsuwan and Xuefei Huang.

Zhongyu Yang and Wayne Hubbell at UCLA also contributed to this research.

This research was funded in part by the Hunt for a Cure foundation and the Clinical and Translational Research Institute at MSU.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Michigan State University

Related Amino Acids Articles:

Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.
Metabolic reprogramming of branched-chain amino acid facilitates drug resistance in lung cancer
Research teams led by Dr. Ji Hongbin at the Institute of Biochemistry and Cell Biology of the Chinese Academy of Sciences, Dr.
Researchers develop fast, efficient way to build amino acid chains
Researchers report that they have developed a faster, easier and cheaper method for making new amino acid chains -- the polypeptide building blocks that are used in drug development and industry -- than was previously available.
Characterisation of the structure of a member of the L-Amino acid Transporter (LAT) family
Mutations in L-amino acid transporters (LATs) can lead to a wide range of conditions, such as autism, hearing loss and aminoacidurias.
Model learns how individual amino acids determine protein function
A machine-learning model from MIT researchers computationally breaks down how segments of amino acid chains determine a protein's function, which could help researchers design and test new proteins for drug development or biological research.
Starving leukemia cells by targeting amino acids
Eliminating ASCT2 selectively stops the growth of leukemia cells, while having limited effects on healthy blood cells and hematopoetic (blood-forming) stem cells.
Unveiling the role of selenocysteine, the mysterious 21st amino acid
Selenocysteine is an essential amino acid for certain species, such as humans and the other vertebrates, although it has disappeared from others, such as insects.
Novel electron microscopy offers nanoscale, damage-free isotope tracking in amino acids
A new electron microscopy technique that detects the subtle changes in the weight of proteins at the nanoscale -- while keeping the sample intact -- could open a new pathway for deeper, more comprehensive studies of the basic building blocks of life.
Enzyme that breaks down amino acids may promote aging
Permanently arrested cell growth is known as 'cellular senescence', and the accumulation of senescent cells may be one cause of aging in our bodies.
Gut bacteria make key amino acids dispensable, expanding food options for invasive flies
Fruit flies fed antibiotics to supress their gut microbiome are forced to avoid the best food patches if they lack vital amino acids, according to a study by Boaz Yuval from The Hebrew University of Jerusalem in Israel and Chang-Ying Nui from Huazhong Agricultural University in China, publishing Jan.
More Amino Acids News and Amino Acids Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.