Nav: Home

Protease-activated receptors differentially regulate endothelial nitric oxide synthase

March 31, 2016

Protease-activated receptors (PARs) are a family of G-protein-coupled receptors that are primarily expressed in cells of the vasculature and known for their involvement in regulation of vascular tone. These receptors induce endothelium-dependent relaxation via production and release of a potent vasodilator, nitric oxide (NO), and therefore, play an important role in the function of the endothelium. Disruption of endothelial function can lead to the development of cardiovascular diseases such as atherosclerosis and hypertension. There are four members of the PAR family, PAR-1 through -4, and unlike traditional receptors, which are activated by coupling with a ligand, these receptors are uniquely irreversibly activated via cleavage by serine proteases that expose a neo-N-terminus, which acts as a self-activating peptide. PAR-1, -3 and -4, are directly activated by thrombin, a serine protease responsible for platelet aggregation, endothelial cell activation, and other important responses in the vasculature. PAR-2 is activated by trypsin-like enzymes and can respond to thrombin only through transactivation by PAR-1.

It was known that several members of the PAR family modulate the production of NO via post-translational modification of endothelial nitric oxide synthase (eNOS). PARs have been shown to phosphorylate this enzyme at two specific regulatory sites. When eNOS-Ser-1177/-1179 (human/bovine) is phosphorylated, there is an increase in eNOS activity followed by an immediate increase in the production of NO. In contrast, when eNOS-Thr-495/-497 (human/bovine) is phosphorylated, eNOS activity is down regulated, which leads to a decrease in NO production. Motley and colleagues have previously demonstrated the reciprocal regulation of the phosphorylation of these two sites on eNOS by PARs using bovine aortic endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs). In addition, PARs phosphorylate the two eNOS sites via different G protein-dependent signal transduction pathways. They showed that thrombin and a selective PAR-1 activating peptide (AP), TFLLR, modulate eNOS negatively by phosphorylating eNOS at the Thr-495 site and signals through a Rho/ROCK dependent-pathway that is coupled to G12/13. Activation of PAR-2 via PAR-1 transactivation or using an activating peptide specific for PAR-2, SLIGRL, phosphorylates eNOS at Ser1177 through Gq, which is coupled to Ca2+, a PKC-δ-sensitive, and PI3K/AKT-independent signaling pathway.

In the March 2016 issue of Experimental Biology and Medicine Tillery et al provide evidence of a deviation from the classical role of PARs in mediating the regulation of eNOS phosphorylation in humans. In this study, primary human coronary artery endothelial cells (HCAECs) were used as a model system to characterize the signaling potential of PARs. Thrombin was observed to primarily regulate the positive site of eNOS, inducing phosphorylation of eNOS-Ser-1177. Activation of PAR-1 and PAR-2 using specific activating peptide ligands phosphorylated both regulatory sites with evidence of dual signaling pathways. However, only PAR-1 activation resulted in an increase in NO metabolites, which favors vasodilation, while selective PAR-2 activation prevented NO production, which favors vasoconstriction. In addition, they were able to characterize the functional role of PAR-3, which induced eNOS-Thr-495 phosphorylation only; whereas PAR-4, which was not expressed in these cells. These are novel findings, which characterize PAR-mediated eNOS/NO signaling in relevant HACECs in the critical vasculature altered in ischemic heart disease. Tillery reflected, "Being able to understand PAR signaling in the human vasculature will aid in targeting specific molecular sites in the vasculature for therapeutic treatments to circumvent endothelial dysfunction and decrease the prevalence of other associated cardiovascular diseases."

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "the studies by Motley and colleagues provides unique insight into PAR signaling which could lead to new therapies to treat vascular diseases".
Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903. Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit If you are interested in publishing in the journal please visit

Society for Experimental Biology and Medicine

Related Phosphorylation Articles:

Marker reveals if benign-appearing meningiomas are perilous
A modified protein in benign-appearing meningiomas can reveal which are truly benign and which are more dangerous and require more aggressive treatment, researchers have discovered.
Cell signalling breakthrough opens up new avenues for research
Researchers at the University of Liverpool have shown that the phenomenon of protein modification (phosphorylation) in cell signalling is far more diverse and complex than previously thought.
Chronobiology: Sleep and synaptic rhythms
Chronobiologists at Ludwig-Maximilians-Universitaet (LMU) in Munich, Germany, show in two articles in the journal Science how critical the sleep-wake cycle is for protein and phosphorylation dynamics in synapses to ultimately regulate its activity.
Scientists find precise control of terminal division during plant stomatal development
A research group led by Prof. LE Jie at the Institute of Botany of the Chinese Academy of Sciences found a genetic suppressor of flp stomatal defects.
Phosphorylation of Regnase-1 lets IL-17 run amok
A research team led by Osaka University found that the cytokine interleukin (IL)-17 triggers the phosphorylation of mRNA-degrading enzyme Regnase-1, resulting in excessive inflammation.
Inhibition of protein phosphorylation promotes optic nerve regeneration after injury
Research results from a recent study led by a Waseda University-led team suggest that the inhibition of phosphorylation of microtubule-binding protein CRMP2 could be a novel approach to the development of treatments for optic neuropathies, such as glaucoma and traumatic injury.
Chemical modifiers tag-team to regulate essential mechanism of life
For decades, scientists thought that one modification, phosphorylation, ran the show.
p62 and Nrf2 are essential for exercise-mediated enhancement of antioxidant protein in muscle
Regular exercise prevents oxidative stress-induced muscle wasting, at least partially by improving the antioxidant defense system.
Elucidating cellular responses to force
Accumulated evidence suggests that physical force plays an important role in various developmental processes of fertilized animal eggs.
The cytoskeleton of neurons has been found to be involved in Alzheimer's disease
A researcher at the UPV/EHU has participated in a study describing what it is during the early stages of Alzheimer's that triggers the loss of dynamics and subsequent impairment of the dendritic spines, the compartments of the neurons responsible for receiving nerve impulses from other neurons.
More Phosphorylation News and Phosphorylation Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at