Nav: Home

Applying parameter selection and verification techniques to an HIV model

March 31, 2016

Physical and biological models often have hundreds of inputs, many of which may have a negligible effect on a model's response. Establishing parameters that can be fixed at nominal values without significantly affecting model outputs is often challenging; sometimes these parameters cannot be simply discerned by the outputs. Thus, verifying that a parameter is noninfluential is both computationally challenging and quite expensive.

In a paper publishing this week in the SIAM Journal on Uncertainty Quantification, authors Mami Wentworth, Ralph Smith, and H.T. Banks apply robust parameter selection and verification techniques to a dynamic HIV model. "Biological and physical models, such as the HIV model, often have a large number of parameters and initial conditions that cannot be measured directly, and instead must be inferred through statistical analysis," says Smith. "For this to be successfully accomplished, measured responses must adequately reflect changes in these inputs." The authors implement global sensitivity analysis to identify input subsets, fix noninfluential inputs, and pinpoint those with the most potential to affect model response. "The role of global sensitivity analysis is to isolate those parameters that are influential and that can and must be inferred through a fit to data," says Smith. "Noninfluential parameters are fixed at nominal values for subsequent analysis." Discerning influential parameters from noninfluential ones enables the authors to reduce the parameter dimensions and look more closely at the portions of the model that affect HIV treatment plans.

Using data from patients who were part of a clinical study, the authors verify the HIV model's predictive capability. A system of ordinary differential equations (ODEs) describes HIV in the model, including uninfected and infected cells that are both activated and resting. The selection and verification techniques enhance the model's reliability, and are more effective than the local sensitivity-based method originally performed on the HIV model, which is used as a point of comparison. "Models of this type [those analyzed by local sensitivity-based methods] exhibit highly nonlinear dependencies between parameters and responses, which limits the applicability of local sensitivity analysis," says Smith. Ultimately, more reliable models facilitate the development of enhanced treatment methods that increase T-cell counts in patients with HIV. Determining their model's influential factors allow Wentworth et al. to fix the noninfluential parameters and minimize the parameter dimensions for future uncertainty quantification. Their selection techniques are essential in regulating better control for drug therapy. Ultimately, the authors seek to better comprehend HIV dynamics and eventually establish optimal treatment strategies. They chose to employ an HIV model because of Banks' familiarity with the model type. "He developed it and has substantial experience employing it to characterize HIV dynamics and develop potential treatment regimes," says Smith.

The authors' parameter selection and verification techniques are applicable to multiple types of physical and biological models, including those of behavior patterns and other diseases. "The techniques illustrated here are general in nature and can be applied to a wide range of biological and physical applications modeled by systems of ordinary differential equations or partial differential equations," says Smith.
-end-
Source article: Parameter Selection and Verification Techniques Based on Global Sensitivity Analysis Illustrated for an HIV Model. SIAM Journal on Uncertainty Quantification. (To be published).

About the Authors: Mami Wentworth earned her Ph.D. in Applied Mathematics from North Carolina State University in 2015. She is an assistant professor in the Department of Applied Mathematics at Wentworth Institute of Technology. Ralph Smith is a Distinguished Professor of Mathematics in the Department of Mathematics at North Carolina State University, associate director of the Center for Research in Scientific Computing (CRSC), and a member of the Operations Research Program. H.T. Banks is a Distinguished University Professor, Drexel Professor of Mathematics, and Director of the Center for Research in Scientific Computation at North Carolina State University. The paper will publish online March 31st. Email sorg@siam.org to obtain an advance copy of the paper.

Society for Industrial and Applied Mathematics

Related Hiv Articles:

The Lancet HIV: Severe anti-LGBT legislations associated with lower testing and awareness of HIV in African countries
This first systematic review to investigate HIV testing, treatment and viral suppression in men who have sex with men in Africa finds that among the most recent studies (conducted after 2011) only half of men have been tested for HIV in the past 12 months.
The Lancet HIV: Tenfold increase in number of adolescents on HIV treatment in South Africa since 2010, but many still untreated
A new study of more than 700,000 one to 19-year olds being treated for HIV infection suggests a ten-fold increase in the number of adolescents aged 15 to 19 receiving HIV treatment in South Africa, according to results published in The Lancet HIV journal.
Starting HIV treatment in ERs may be key to ending HIV spread worldwide
In a follow-up study conducted in South Africa, Johns Hopkins Medicine researchers say they have evidence that hospital emergency departments (EDs) worldwide may be key strategic settings for curbing the spread of HIV infections in hard-to-reach populations if the EDs jump-start treatment and case management as well as diagnosis of the disease.
NIH HIV experts prioritize research to achieve sustained ART-free HIV remission
Achieving sustained remission of HIV without life-long antiretroviral therapy (ART) is a top HIV research priority, according to a new commentary in JAMA by experts at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.
First ever living donor HIV-to-HIV kidney transplant
For the first time, a person living with HIV has donated a kidney to a transplant recipient also living with HIV.
More Hiv News and Hiv Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...