Nav: Home

Aging diminishes spinal cord regeneration after injury

March 31, 2016

Older Americans are increasingly active, and this lifestyle shift has contributed to the rise in average age of a person experiencing a spinal cord injury. The changing demographic calls for a better understanding of how aging impacts recovery and repair after a spinal cord injury. To this end, researchers at University of California, San Diego School of Medicine and University of British Columbia (UBC) have now determined that, in mice, age diminishes ability to regenerate axons, the brain's communication wires in the spinal cord. The study is published March 31 in Cell Reports.

"This is the first report focusing on the impact age has on axonal regeneration in the central nervous system," said senior author Binhai Zheng, PhD, associate professor of neurosciences at UC San Diego School of Medicine. "Since many central nervous system diseases and disorders are age-related and are increasingly occurring in older populations, our study will likely have wide implications for both basic research and translational efforts on central nervous system dysfunction and restoration."

In mammals, axons in the brain and spinal cord are limited in their ability to regenerate after injury. This is true even in young adults, making it a challenge to study the impact of age on regeneration. To examine how age affects regeneration, Zheng and colleagues removed the Pten gene in the neurons of both young and old mice (up to 18 months old), a molecular manipulation known to promote regeneration in young adult mammals.

The researchers found that, as in young mice, Pten deletion in neurons of older mice elicited the types of post-injury cellular responses that often indicate increased regeneration. However, axons in older mice were far less able to regenerate past the injury site, which would be required for any functional gains. In addition, older mice had increased signs of inflammation and other changes at injury sites, as compared to younger mice. These changes indicate that axons in older mice face a more difficult environment for regeneration.

"In older adults, axons are traveling through what is more like rocky, unpaved roads rather than smooth highways -- it takes a lot more effort," Zheng said.

From these observations, the researchers concluded that advancing age is associated with a further decline in the mammalian central nervous system's ability to regenerate axons. The team studied two different types of neurons and the results were similar.

"The fact that our two labs worked on different types of neurons, initially not knowing each other's work, but in the end converged on the same conclusion bodes well for the general applicability of these findings," said co-senior author Wolfram Tetzlaff, MD, PhD, professor at UBC and director of the International Collaboration On Repair Discoveries (ICORD), the spinal cord injury research center of UBC and Vancouver Coastal Health Research Institute. "The important implication is that in our fight against paralysis, we ought to think about how to overcome the increased challenges in promoting repair and recovery in older individuals as well."

Since current regeneration studies are mostly conducted in young adult animals, the researchers say the new study also underscores the need to validate research findings in older animals.

"We were surprised to learn just how quickly our central nervous system declines in its regenerative ability as we age," Zheng said. "These results suggest that this came much earlier than expected if regeneration were to decline at the same pace as the normal aging process. In other words, middle-aged adults, the peak age group for people living with a paralyzing spinal cord injury today, already have a significantly reduced ability to regenerate, as compared to young adults. It would be interesting to determine if the molecular machineries for neural regeneration and normal aging interact."

Next, the researchers say they will look for ways to counteract this age-associated decline in regeneration by boosting neurons' natural regeneration programs, as well as by modifying the terrain in which axons regenerate.
-end-
Study co-authors include Cédric G. Geoffroy, UC San Diego; and Brett J. Hilton, ICORD/UBC.

This research was funded, in part, by the National Institutes of Health (grant R01NS054734), California Institute for Regenerative Medicine (grant RB3-02143), Canadian Institutes for Health Research, Wings for Life Foundation, International Spinal Research Trust, Craig H. Neilsen Foundation, and John and Penny Ryan British Columbia Leadership Chair in Spinal Cord Injury Research.

University of California - San Diego

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.