Nav: Home

Illuminating the inner 'machines' that give bacteria an energy boost

March 31, 2016

Scientists at the University of Liverpool have tracked how microscopic organisms called cyanobacteria make use of internal protein 'machines' to boost their ability to convert carbon dioxide into sugar during photosynthesis.

With global food and energy security one of the greatest challenges of the 21st century, the new findings could help inform the design and engineering of new nanotechnologies to improve crop yields and biomass production.

Cyanobacteria, often known as blue-green algae, are among the most abundant organisms in oceans and fresh water. They are similar to green plants because they can use the energy from sunlight to make their own food through photosynthesis. However, unique to cyanobacteria are intracellular structures called carboxysomes that allow them to convert carbon dioxide to sugar - a process known as carbon fixation - significantly more efficiently than many crops can.

Carboxysomes are made of polyhedral protein shells and contain the enzymes required for the bacteria to fix carbon during the Calvin cycle stage of photosynthesis. Little is known about how these nano-scale 'machines' are produced or how they are regulated to adjust to environmental changes, such as light intensity.

In a new study, published in Plant Physiology, researchers from the University's Institute of Integrative Biology attached fluorescent tags to carboxysomes and then used a fluorescence microscope to watch them in action within individual cells.

By experimentally altering the amount of light available during cell growth the researchers observed how cyanobacteria regulate carbon fixation activity by changing the amount of carboxysomes in cells.

The researchers also used chemical inhibitors that modify metabolism to monitor how this affects the distribution pattern of carboxysomes. They found that carboxysomes can either spread out or sit in the central line of the rod-shaped cell, depending on the redox states of electron transport pathways induced by the inhibitors.

In collaboration with Dr Steve Barrett from the University's Department of Physics, the team developed a method to statistically analyse hundreds to thousands of bacterial cells from the microscope images.

Co-author Dr Fang Huang, said: "It's exciting that through this technique we can now monitor, in real time, how bacteria modulate carboxysomes to maximise their carbon-fixing capacity. Our findings also provide some new clues about the relationship between the positioning of carboxysomes and cell metabolism."

Carboxysomes are of interest to synthetic biologists and bioengineers, who hope to find ways to utilise their energy-boosting potential in food and biofuel production.

Dr Luning Liu, lead author of the research, said: "Introducing cyanobacterial carboxysomes into plant chloroplasts could potentially improve the efficiency of photosynthesis and thereby the biomass yields.

"There's still a lot we need to learn before their potential can be exploited. At this stage, we're just starting to understand how these fascinating cellular machines work, and this study marks another important step forward in this process."
-end-
The project was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and a Royal Society University Research Fellowship.

The paper 'Light modulates the biosynthesis and organization of cyanobacterial carbon fixation machinery through photosynthetic electron flow' is published in Plant Physiology

University of Liverpool

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.