Nav: Home

MicroRNA controls growth in highly aggressive B-cell lymphomas

March 31, 2016

MIAMI, March 31, 2016 -- A recent study by researchers at Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine showed that a microRNA called miR-181a dampens signals from the cancer-driving NFκB protein pathway in the most aggressive large B-cell lymphomas (DLBCL). By reducing NFκB signaling, miR-181a controls tumor cell proliferation and survival and could be the target of novel therapies. The study was published in the journal Blood.

"The miR-181a microRNA is one of the first examples of a pathway that deactivates NFκB at multiple levels, functioning as a master regulator," said Izidore S. Lossos, M.D., director of the Lymphoma Program at Sylvester and lead author of the study. "In certain tumors there is no expression of this microRNA, which allows cells to propagate. We believe miR-181a could eventually be used therapeutically."

DLBCL is the most common form of non-Hodgkin lymphoma, affecting more than 100,000 patients in the U.S. Recent genomic advances have allowed researchers and clinicians to subtype DLBCL into two groups: GCB-like and ABC-like. In addition to being more aggressive and deadly, ABC-like lymphomas resist the programmed cell death induced by chemotherapy.

ABC-like DLBCLs are driven, in part, by a hyperactive form of NFκB, which is known to play a significant role in several cancers. In normal B-cells, NFκB gets turned on when necessary and subsequently turned off. However, in ABC-like DLBCL, the pathway is turned on permanently, leading to rampant growth.

"NFκB one of the most important and most studied pathways in humans," noted Lossos. "In normal cells it can only be activated in response to stimuli. However, in this subset of lymphoma cells, it is constitutively active all the time."

The ABC-like form of DLBCL has another distinction - it has less miR-181a, a critical gene regulator. While messenger RNAs carry instructions to translate genes into proteins, microRNAs perform a very different function: shutting down gene expression post transcriptionally. Previous studies by Lossos' group have shown that DLBCL patients whose tumors contain more miR-181a have better prognoses.

To understand the roles played by miR-181a and NFκB in each type of DLBCL, the team studied both cell lines and human tumor grafts in mice. They found that miR-181a levels were significantly lower in the ABC-like tumors compared to the GCB-like group.

In addition, adding miR-181a to ABC-like cell lines and tumor grafts reduced NFκB activity, diminished tumor growth, and significantly increased animal survival. This ability to reduce NFκB levels may be why the presence of miR-181a is linked to better outcomes for certain DLBCL patients.

In fact, the researchers found miR-181a is a master regulator, turning off a number of genes in the NFκB pathway, including CARD11, a known DLBCL oncogene, and a number of transcription factors (proteins that turn on genes) that drive NFκB signaling.

"We knew that miR181a was biomarker for survival," said Lossos. "This explains the mechanisms behind it."

In addition to providing a better understanding of the NFκB pathway, these results provide hope that miR-181a could be used therapeutically to help patients with ABC-like DLBCL.

"We are trying to develop miR-181a as a potential therapy," said Lossos, "but we are only at the beginning. Much more work needs to be done. It will not be a simple journey, but we are sure it can be done and tested in humans eventually to see that it indeed will improve patients' outcomes."
-end-
This research was supported by the Lymphoma Research Foundation and the Dwoskin, Recio & Greg and Olsen & Anthony Rizzo Family Foundations.

About Sylvester Comprehensive Cancer Center

Sylvester Comprehensive Cancer Center, part of UHealth - the University of Miami Health System and the University of Miami Miller School of Medicine, is among the nation's leading cancer centers, and South Florida's only Cancer Center of Excellence. With the combined strength of more than 115 cancer researchers and 130 cancer specialists, Sylvester discovers, develops and delivers more targeted therapies leading to better outcomes - providing the next generation of cancer clinical care - precision cancer medicine - to each patient. Our comprehensive diagnostics coupled with teams of scientific and clinical experts who specialize in just one type of cancer, enable us to better understand each patient's individual cancer and develop treatments that target the cells and genes driving the cancer's growth and survival. At Sylvester, patients have access to more treatment options and more cancer clinical trials than most hospitals in the southeastern United States. To better serve current and future patients, Sylvester has a network of conveniently located outpatient treatment facilities in Miami, Kendall, Hollywood, Plantation, Deerfield Beach and Coral Springs, with plans to open in Coral Gables in 2016. For more information, visit sylvester.org.

University of Miami Miller School of Medicine

Related Microrna Articles:

Researchers uncover key role for microRNA in inflammatory bowel disease
An international team of researchers has discovered that a microRNA produced by certain white blood cells can prevent excessive inflammation in the intestine.
MicroRNA may reduce stroke risk
The molecule microRNA-210 stabilises deposits in the carotid artery and can prevent them from tearing.
MicroRNA treatment restores nerve insulation, limb function in mice with MS
Scientists partially re-insulated ravaged nerves in mouse models of multiple sclerosis (MS) and restored limb mobility by treating the animals with a small non-coding RNA called a microRNA.
Choreographing the microRNA-target dance
Molecular biologists at UT Southwestern Medical Center were able to uncover a new mechanism that choreographs a complex molecular dance by applying the latest in gene editing technology combined with a traditional method of making a microRNA target produce a fluorescent green protein.
A chemical-biological strategy for microRNA target identification
Chen-Yu Zhang's group at Nanjing University reports photo-clickable miRNAs as probes for intracellular target identification of miRNAs.
Down regulation of microRNA-155 may underlie age-related hypertension
In this issue of JCI Insight, researchers led by Iris Jaffe of Tufts Medical Center provide evidence that age-related reductions of a microRNA (miR-155) underlie age-associated hypertension.
Loss of a microRNA family, let-7, found key in neuroblastoma
A study led by researchers at Dana-Farber/Boston Children's Cancer and Blood Disorders Center, finds that a microRNA called let-7 plays a central role in curbing neuroblastoma and could focus efforts to find a targeted, nontoxic alternative to chemotherapy.
Mechanisms & therapeutic targets of microRNA-associated chemoresistance in epithelial ovarian cancer
This review provides an overview of current therapeutic targets of miRNA-associated chemoresistance in EOC and illustrates the therapeutic potential and molecular mechanisms by which miRNAs influence the development and reversal of chemoresistance.
MicroRNA may help control arterial thrombosis
In a new study published online this week in The FASEB Journal, a Brigham and Women's Hospital research team investigated the role of miR-181b in blocking the development of arterial thrombosis.
Restoring chemotherapy sensitivity by boosting microRNA levels
By increasing the level of a specific microRNA (miRNA) molecule, researchers have for the first time restored chemotherapy sensitivity in vitro to a line of human pancreatic cancer cells that had developed resistance to a common treatment drug.

Related Microrna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".