Nav: Home

New recommendations link better sleep to improved concussion outcomes

March 31, 2016

BALTIMORE - March 31, 2016. A national group of sleep and brain injury specialists recommends specific steps to test and develop sleep-related treatments to improve the outcome of mild traumatic brain injury (mTBI). The recommendations, developed by a University of Maryland School of Medicine sleep specialist, along with experts from medicine, the military and private industry, appear online ahead of print in the journal Neurotherapeutics.

"Clinical practice guidelines in mTBI or concussion are woefully lacking, despite spending tens of millions of dollars over the past decade," says the group's chair, Emerson M. Wickwire, PhD, an assistant professor of psychiatry and medicine. "We still are not very good at improving long-term outcomes and reducing the prevalence of patients who end up with long-term effects of concussion."

Wickwire, who is also director of the Insomnia Program at the University of Maryland Medical Center, says investors from industry and government have called for increased effort to see if mTBI outcomes can be improved. "Leaders in TBI identified four topical areas that may be potential pathways to improve outcomes in mTBI: neuroinflammation, neuropsychiatric disease, chronic pain, and of course, disturbed sleep."

Wickwire says sleep and brain injury appear to share several overlapping brain circuits. "Structures damaged in brain injury may cause alterations in sleep/wake cycles. At the same time, sleep disturbances, which are reported by roughly half of people with brain injury, worsen quality of life, make treatment more difficult, and may well change the way the brain heals itself," he says.

Given the shared neurophysiologic underpinnings of sleep and mTBI, Wickwire says disturbed sleep and clinical sleep disorders represent treatment targets that can be modified to improve outcomes and quality of life in mTBI.

Traumatic brain injury, resulting from any force applied to the head or body, is generally categorized as either mild or moderate to severe, based on factors assessed at the time of injury, including level of responsiveness, duration of loss of consciousness, length of post-traumatic amnesia and findings from neuroimaging. Mild TBI is the primary focus of this publication.

The group has developed several recommendations to improve sleep outcomes in patients with mild TBI. They include: data repositories where sleep-specific information could be incorporated into existing TBI repositories and aggregated across multiple centers; serial assessment of mild TBI patients at various time intervals post-injury to help identify those who may develop long-term sleep disorders; research targeting treatments for mTBI-specific sleep disorders; sleep-specific education for head injury medical professionals; and increased access to sleep treatment services at head trauma centers.

Regarding treatment, Wickwire says there are many questions to be answered. "On the one hand, is sleep in and of itself therapeutic and can we manipulate sleep through pharmacologic or other means, in a way that will improve healing and recovery following brain injury?"

A second group of questions deals with clinical sleep disorders--insomnia, obstructive sleep apnea, circadian rhythm disorders, which affect sleep scheduling, parasomnias, such as sleep walking, and fatigue that develops following brain injury. "We have effective treatments for these sleep disorders in non-brain-injured patients, but we need to adapt these treatments to patients with mTBI, who might have unique needs," says Wickwire. "There may also be sleep problems that are unique to patients with mTBI for which there are no currently effective treatments."

"Success at improving outcomes in patients with mild traumatic brain injury will require sustained effort on many fronts, and from a variety of disciplines," says E. Albert Reece, MD, PhD, MBA, vice president for medical affairs at the University of Maryland and the John Z. and Akiko K. Bowers Distinguished Professor and dean of the University of Maryland School of Medicine. "The recommendations in this paper set forth a clear pathway to reach that goal."

Approximately 1.7 million Americans sustain a TBI each year, according to data from the Centers for Disease Control and Prevention, cited in the paper. About 70 percent (1.2 million) are considered mild. Wickwire says that number is likely much higher, as many cases go undiagnosed, unreported and thus uncounted. Estimated costs of traumatic brain injury exceed $21.5 billion per year for mild TBI.
-end-
Wickwire EM, Williams SG, Roth T, Capaldi VF, Jaffe M, Moline M, Motamedi GK, Morgan GW, Mysliwiec V, Germain A, Pazdan RM, Ferziger R, Balkin TJ, MacDonald ME, Macek TA, Yochelson MR, Scharf SM, Lettieri CJ. "Sleep, Sleep Disorders, and Mild Traumatic Brain Injury. What We Know and What We Need to Know: Findings from a National Working Group." Neurotherapeutics. http://dx.doi.org/10.1007/s13311-016-0429-3

About the University of Maryland School of Medicine

The University of Maryland School of Medicine was chartered in 1807 and is the first public medical school in the United States and continues today as an innovative leader in accelerating innovation and discovery in medicine. The School of Medicine is the founding school of the University of Maryland and is an integral part of the 11-campus University System of Maryland. Located on the University of Maryland's Baltimore campus, the School of Medicine works closely with the University of Maryland Medical Center and Medical System to provide a research-intensive, academic and clinically based education. With 43 academic departments, centers and institutes and a faculty of more than 3,000 physicians and research scientists plus more than $400 million in extramural funding, the School is regarded as one of the leading biomedical research institutions in the U.S. with top-tier faculty and programs in cancer, brain science, surgery and transplantation, trauma and emergency medicine, vaccine development and human genomics, among other centers of excellence. The School is not only concerned with the health of the citizens of Maryland and the nation, but also has a global presence, with research and treatment facilities in more than 35 countries around the world. For more information, visit medschool.umaryland.edu.

About the University of Maryland Medical Center

The University of Maryland Medical Center (UMMC) is comprised of two hospitals in Baltimore: an 800-bed teaching hospital -- the flagship institution of the 12-hospital University of Maryland Medical System (UMMS) -- and a 200-bed community teaching hospital, UMMC Midtown Campus. UMMC is a national and regional referral center for trauma, cancer care, neurocare, cardiac care, diabetes and endocrinology, women's and children's health, and has one of the largest solid organ transplant programs in the country. All physicians on staff at the flagship hospital are faculty physicians of the University of Maryland School of Medicine. At UMMC Midtown Campus, faculty physicians work alongside community physicians to provide patients with the highest quality care. UMMC Midtown Campus was founded in 1881 and is located one mile away from the University Campus hospital. For more information, visit umm.edu.

University of Maryland Medical Center

Related Traumatic Brain Injury Articles:

Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.
Blue light can help heal mild traumatic brain injury
Daily exposure to blue wavelength light each morning helps to re-entrain the circadian rhythm so that people get better, more regular sleep which was translated into improvements in cognitive function, reduced daytime sleepiness and actual brain repair.
Dealing a therapeutic counterblow to traumatic brain injury
A team of NJIT biomedical engineers are developing a therapy which shows early indications it can protect neurons and stimulate the regrowth of blood vessels in damaged tissue.
Predictors of cognitive recovery following mild to severe traumatic brain injury
Researchers have shown that higher intelligence and younger age are predictors of greater cognitive recovery 2-5 years post-mild to severe traumatic brain injury (TBI).
Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.
Traumatic brain injury and kids: New treatment guidelines issued
To help promote the highest standards of care, and improve the overall rates of survival and recovery following TBI, a panel of pediatric critical care, neurosurgery and other pediatric experts today issued the third edition of the Brain Trauma Foundation Guidelines for the Management of Pediatric Severe TBI.
Addressing sleep disorders after traumatic brain injury
Amsterdam, NL, December 10, 2018 - Disorders of sleep are some of the most common problems experienced by patients after traumatic brain injury (TBI).
Rutgers researchers discover possible cause for Alzheimer's and traumatic brain injury
Rutgers researchers discover a possible cause for Alzheimer's and traumatic brain injury, and the new mechanism may have also led to the discovery of an effective treatment.
Traumatic brain injury recovery via petri dish
Researchers in the University of Georgia's Regenerative Bioscience Center have succeeded in reproducing the effects of traumatic brain injury and stimulating recovery in neuron cells grown in a petri dish.
Traumatic brain injury may be associated with increased risk of suicide
An increased risk of suicide was associated with those residents of Denmark who sought medical attention for traumatic brain injury (TBI) compared with the general population without TBI in a study that used data from Danish national registers.
More Traumatic Brain Injury News and Traumatic Brain Injury Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.