Nav: Home

Motor learning tied to intelligent control of sensory neurons in muscles

March 31, 2016

Sensory neurons in human muscles provide important information used for the perception and control of movement. Learning to move in a novel context also relies on the brain's independent control of these sensors, not just of muscles, according to a new study published in the journal Current Biology.

Each muscle can have tens or hundreds of encapsulated sensory receptors, and these "sensors" are called muscle spindles. Spindles differ from other sensory receptors as they also receive nerve fibers from the central nervous system itself, which acts to control spindle output.

There are more nerve fibers travelling to and from spindles than to the actual muscle tissues generating force and powering movement. Despite more than a hundred years of research on this class of sensory receptors, however, it has been unclear how, why and when the nervous system chooses to independently control spindles.

"The findings strongly point to independent control of these sensors during motor learning," says Dr. Michael Dimitriou, who conducted the study and is a researcher at the Department of Integrative Medical Biology at Umeå University in Sweden.

In this study, Dr. Dimitriou monitored spindle signals in humans while they learned to control the position of a visual cursor by moving their hand (much like using a computer mouse). Depending on what stage in the learning process, the spindles sent very different signals in response to virtually identical movements.

The research shows that the sensory capability of spindle neurons was adjusted according to the ongoing requirements of the task being learned. In other words, muscle spindle signal patterns were changed during the learning process to become selectively informative about different aspects of movement.

"It is well-known that effective extraction of information is a major component in good learning performance, and this is true in motor adaptation as well. Richer and more relevant sensory information from spindles allows for efficient update of the computational circuits in our brain that guide movement. Differing levels of skill in controlling muscle sensors is probably a factor defining individual differences in motor learning performance," says Dr. Dimitriou.

Beyond increased understanding of how human motor learning works, the current findings may also have more practical implications, such as in prosthetic limb and robotics control, argues Michael Dimitriou:

"To use a common example, computer algorithms can easily defeat a human in a game of chess. However, even the most sophisticated robot cannot match the skill and dexterity of a child in moving pieces on the chessboard. Better understanding of human sensory control is a way forward."
-end-


Umea University

Related Learning Articles:

Learning with light: New system allows optical 'deep learning'
A team of researchers at MIT and elsewhere has come up with a new approach to complex computations, using light instead of electricity.
Mount Sinai study reveals how learning in the present shapes future learning
The prefrontal cortex shapes memory formation by modulating hippocampal encoding.
Better learning through zinc?
Zinc is a vital micronutrient involved in many cellular processes: For example, in learning and memory processes, it plays a role that is not yet understood.
Deep learning and stock trading
A study undertaken by researchers at the School of Business and Economics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has shown that computer programs that algorithms based on artificial intelligence are able to make profitable investment decisions.
Learning makes animals intelligent
The fact that animals can use tools, have self-control and certain expectations of life can be explained with the help of a new learning model for animal behavior.
Learning Morse code without trying
Researchers at the Georgia Institute of Technology have developed a system that teaches people Morse code within four hours using a series of vibrations felt near the ear.
The adolescent brain is adapted to learning
Teenagers are often portrayed as seeking immediate gratification, but new work suggests that their sensitivity to reward could be part of an evolutionary adaptation to learn from their environment.
The brain watched during language learning
Researchers from Nijmegen, the Netherlands, have for the first time captured images of the brain during the initial hours and days of learning a new language.
Learning in the absence of external feedback
Rewards act as external factors that influence and reinforce learning processes.
New learning procedure for neural networks
Neural networks learn to link temporally dispersed stimuli.

Related Learning Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...