Nav: Home

Independent evolutionary origins of complex sociality in marine life

March 31, 2017

In the world of evolutionary research, scientists studying the evolution of eusocial societies have traditionally relied on information gathered from studying terrestrial insects. A group of Columbia researchers, however, has just added to that knowledge base, publishing a new study that sheds light on how the complex social system evolved in the sea.

The study reveals that, in snapping shrimps, eusociality - a social system characterized by cooperative care of juveniles; reproductive division of labor, where many group members are temporarily or permanently sterile; and overlap of generations - only seems to have evolved from pair-forming species and not through intermediate forms of social systems. Although being phylogenetically and ecologically distinct from insects, it turns out that the evolution of eusociality in snapping shrimps follows the so-called "subsocial route" first proposed for insects nearly 50 years ago.

"Our study shows that there is really only one way to become eusocial in shrimps -

By forming a family group where parents and offspring live together," said Solomon Tin Chi Chak, lead author on the study and a postdoctoral research scientist in the lab of Associate Professor Dustin Rubenstein in the Department of Ecology, Evolution & Environmental Biology. "Communal species of shrimps where unrelated individuals live together in a large group have never transitioned into eusocial species."

Shrimps and many other animals can be grouped into three general categories of social organization: simple, pair-forming species, in which reproducing pairs of males and females live together; communally breeding societies, in which reproduction is more or less evenly distributed among group members that are often unrelated; and complex, eusocial societies, where reproduction is dominated by a single female and nonbreeding individuals fulfill roles caring for the young or protecting and providing for the group. How simple groups transition evolutionarily to more complex societies has remained unclear. Competing hypotheses based largely on research on terrestrial insect species, such as ants, bees, wasps and termites, suggest that eusociality and communal breeding are either alternative evolutionary endpoints, or that communal breeding is an intermediate stage in the transition from pair-forming to eusociality.

To test the hypotheses in a marine population, the researchers looked to the bottom of the ocean.

Snapping shrimps in the genus Synalpheus are the only known marine genus that has evolved eusociality. Living in the canals of marine sponges, the majority of these snapping shrimps live in simple pairs. This genus, however, has mysteriously also developed the two other, more complex forms of social organization. While researchers have observed all three forms of social organization in other animals, snapping shrimps are rare in that all three forms exist in a single genus, leaving researchers questioning how eusociality evolved in the marine environment.

To find answers, Chak and his colleagues began by analyzing a large collection of snapping shrimps amassed over nearly 30 years from the Caribbean. Based on population characteristics of the more than 30 shrimp species, the researchers found that they ultimately clustered into pair-forming, communal and eusocial group categories. The team then attempted to determine which type of society is a more likely precursor to eusociality.

Further analyses, published in Nature Ecology & Evolution, suggested that eusocial and communal species are discrete evolutionary endpoints that evolved independently from pair-forming ancestors along alternative paths. This model parallels observations in insects and vertebrates and the current study confirms that, in marine snapping shrimps, the model also applies - eusociality happens only when hatchlings remain close to home, rather than dispersing to other sponges or parts of the sea, as separating from the "family" makes it impossible to form a family group.

The finding affirms the importance of kin selection - a backbone of social evolution theory for the last half century - in driving social evolution and suggests a general model of animal social evolution, Chak said.

"This work helps us understand the evolutionary history of eusocial and communally breeding social systems, which are socially more complex than pair-forming," he added. "If we want to know more about how complex social systems evolved more broadly in other species of animals, we now have information from a broader range of taxonomic groups that reinforces patterns seen in more commonly studied groups. Our results suggest that communal and eusocial species evolve along their own path. They are actually two very distinct social organizations and they may have evolved for different reasons. Understanding the ecological and genetic basics of how and why pair-forming species transition to communal and eusocial species will be important to our future work."
-end-


Columbia University

Related Evolution Articles:

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
Guppies teach us why evolution happens
New study on guppies shows that animals evolve in response the the environment they create in the absence of predators, rather than in response to the risk of being eaten.
Undercover evolution
Our individuality is encrypted in our DNA, but it is deeper than expected.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
More Evolution News and Evolution Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.