Nav: Home

Antibody is effective against radiation-induced pulmonary fibrosis

March 31, 2017

Radiation therapy is part of the treatment regimen for about two thirds of cancer patients today. Radiotherapy is well tolerated in most cases, but it can also lead to damage in healthy tissues that are also irradiated. One debilitating side effect is radiation-induced fibrosis. Fibrosis is a process of scarring by which healthy tissue is replaced by less elastic connective tissue, which leads to hardening and functional impairments.

This process particularly affects the delicate tissues of the lungs when lung cancer is treated by radiation therapy. Fibrosis impairs gas exchange and thus causes shortness of breath in patients.

"We know that a whole number of growth factors and inflammation-promoting chemical messengers play a role in the development of fibrosis," said Peter Huber of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ). "But until now, agents targeting these molecules have not been effective enough to prevent pulmonary fibrosis or to improve its symptoms significantly. Much less was it possible to reverse fibrosis once it had developed. Therefore, we are urgently searching for targets that we can use to interrupt, slow down or even reverse this dreadful process."

In experiments with mice, Huber and his colleagues have now tested an antibody that blocks the connective tissue growth factor (CTGF), which is thought to be a key messenger in the transformation of connective tissue in the lungs. The researchers treated mice with the antibody for a period of eight weeks, starting at various time points before and after radiation treatment.

All therapy regimens protected up to 80 percent of the animals from fibrosis. When treatment was started 16 weeks after radiotherapy, the antibody reversed the fibrotic transformation. The density of the pulmonary tissue decreased by more than 50 percent, and pulmonary function and oxygen supply improved. After treatment had ended, the animals still maintained a stable health status and they survived considerably longer compared to untreated fellow animals.

When treatment with the antibody was started 20 days after radiotherapy, seventy percent of the mice survived a radiation dose that would otherwise have been lethal.

The antibody that the Heidelberg researchers used recognizes CTGF of mice as well as its human version. Based on the data obtained in the present work, it is already being studied in clinical trials for use against other types of fibrotic disease.

"The process of fibrotic tissue transformation following radiation therapy is very similar in mice and in men," said Sebastian Bickelhaupt, who is the study's first author. "This suggests that our results are also relevant for humans affected by fibrosis."

Irradiation of a tumor may cause fibrosis not only in the lungs but also in many other organs and may lead to considerable impairments in patients. This happens rather frequently in breast cancer, cancers of the head and neck and esophageal cancer as well as in gynecological cancers.

"The protection from fibrosis that we have been able to achieve using the antibody against CTGF in mice was impressive," Huber said. "We therefore think that it is promising to test the antibody also in humans who have to undergo radiotherapy. Additionally, patients with other types of fibrotic disease that are not related to radiation might also benefit from a blockade of CTGF. And maybe even the chances of curing the cancer will improve: If we reduce radiation-induced side effects, we can increase the radiation dose in the tumor."
-end-
Sebastian Bickelhaupt, Christian Erbel, Carmen Timke, Ute Wirkner, Monika Dadrich, Paul Flechsig, Alexandra Tietz, Johanna Pföhler, Wolfgang Gross, Peter Peschke, Line Hoeltgen, Hugo A. Katus, Hermann-Josef Gröne, Nils H. Nicolay, Rainer Saffrich, Jürgen Debus, Mark D. Sternlicht, Todd W. Seeley, Kenneth E. Lipson, Peter E. Huber: Effects of CTGF Blockade on Attenuation and Reversal of Radiation-Induced Pulmonary Fibrosis. Journal of the National Cancer Institute 2017, DOI 10.1093/jnci/djw339

German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ)

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...